
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

10-17-2003

Energy and Transient Power Minimization During
Behavioral Synthesis
Saraju P. Mohanty
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd
Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Mohanty, Saraju P., "Energy and Transient Power Minimization During Behavioral Synthesis" (2003). Graduate Theses and
Dissertations.
https://scholarcommons.usf.edu/etd/1431

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F1431&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Energy and Transient Power Minimization During Behavioral Synthesis

by

Saraju P. Mohanty

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: N. Ranganathan, Ph.D.
Murali Varanasi, Ph.D.

Srinivas Katkoori, Ph.D.
Wilfredo A. Moreno, Ph.D.

A. N. V. Rao, Ph.D.

Date of Approval:
October 17, 2003

Keywords: peak power, average power, power fluctuation, low power synthesis, datapath
scheduling, multiple supply voltages, dynamic frequency clocking, multicycling, digital

watermarking

c
�

Copyright 2003, Saraju P. Mohanty

www.manaraa.com

DEDICATION

My state Kalinga (Orissa), World’s largest democracy (India), World’s oldest democracy (USA),

my Parents, my Sisters, Uma, and to every one who has taught me free thinking.

www.manaraa.com

ACKNOWLEDGEMENTS

I would like to express gratitude to my major professor, Dr. N. Ranganathan, for his guidance

and support throughout my doctoral degree program. I would sincerely like to thank Dr. K. R.

Ramakrishan, Dr. Mohan S. Kanakanhalli, Dr. Chitta Baral, Dr. Rabi N. Mahapatra, Dr. Debasmita

Misra, Dr. Srinivas Katkoori and Dr. Sanjukta Bhanja for there support in various phases of my

student life. Special thanks to Dr. D. Rundus, Dr. R. Perez, Dr. Goldgof and all the members of

my Ph.D. committee. I would also like to thank all members of VCAPP group (such as, Ashok,

Sunil, Ravi, Karthik, Suvodeep, Mouli, Bamini, Stelian, Hao, Praveen, etc.) for their help and

cooperation. Special thanks to Dr. Austell, ISSS office at USF, the office staffs of CSE department

at USF and technical support staff of CSE department at USF (Daniel). Last but not the least, I

thank all my friends (Uma, Rupesh, Siddy, Ajaya, Lulu, Pati, Prince, Bhabani, Durga, Amaresh,

Krishna, Rajib, Sridhar, Saroj, Jai, Hari, etc.), who have always been a constant source of moral

support.

www.manaraa.com

TABLE OF CONTENTS

LIST OF TABLES v

LIST OF FIGURES viii

ABSTRACT xiii

CHAPTER 1 INTRODUCTION 1
1.1 Fundamentals of High Level Synthesis 4

1.1.1 Why High-Level Synthesis ? 7
1.1.2 Various Phases of High-Level Synthesis 8
1.1.3 A Synthesis Example 12

1.2 Sources of Power Dissipation in a CMOS Circuit 12
1.3 Methods for Power Reduction in High-Level Synthesis 16
1.4 Why Peak Power Minimization ? 18
1.5 Why Average Power and Energy Reduction ? 19
1.6 Why Transient Power Minimization ? 20
1.7 Why Frequency and Voltage Scaling ? 20
1.8 Multiple Supply Voltages, Dynamic Clocking and Multicycling Preliminaries 21

1.8.1 What is Dynamic Frequency Clocking ? 22
1.8.2 Energy or Power Reduction Due to Voltage or Frequency Scaling 22
1.8.3 Issues in Multiple Supply Voltage Based Design 25
1.8.4 Level Converter Design 26
1.8.5 Dynamic Frequency Clocking Unit Design 27

1.9 Fundamentals of Digital Watermarking 31
1.9.1 General Framework for Watermarking 32
1.9.2 Types of Watermarking 35

1.10 Contributions of this Dissertation 38
1.11 Dissertation Outline 40

CHAPTER 2 RELATED WORK 41
2.1 Datapath Scheduling for Energy or Average Power Reduction using

Voltage Reduction 42
2.2 Switching Activity Reduction During High-Level Synthesis 47
2.3 Datapath Scheduling for Peak Power Reduction 55
2.4 Scheduling for Variable Voltage Processor 57
2.5 Design and Synthesis for Low-Power or High-Performance Variable

Voltage / Frequency / Latency and Multiple Voltage Based Systems 65

i

www.manaraa.com

2.6 Hardware Based Digital Watermarking Systems 72
2.7 This Dissertation 73

CHAPTER 3 ENERGY MINIMIZATION 75
3.1 Target Architecture and Datapath Specifications 75
3.2 Time Constrained Scheduling 77

3.2.1 Algorithm Flow 78
3.2.2 Pseudocode Description 80
3.2.3 Time Complexity 82

3.3 Resource Constrained Scheduling 84
3.3.1 Algorithm Flow 86
3.3.2 Pseudocode of the Resource Constrained Algorithm 87
3.3.3 Time Complexity 90

3.4 Experimental Results 91
3.5 Conclusions 96

CHAPTER 4 ENERGY DELAY PRODUCT MINIMIZATION 98
4.1 Energy Delay Product of a Datapath Circuit 98
4.2 ILP Formulations 102

4.2.1 ILP Formulations : Dynamic Frequency Clocking 102
4.2.2 ILP Formulations : Multicycling 103

4.3 Datapath Scheduling Algorithm 105
4.3.1 Scheduling for MVDFC 105
4.3.2 Scheduling for MVMC 106

4.4 Experimental Results 110
4.5 Conclusions 113

CHAPTER 5 PEAK POWER AND AVERAGE POWER MINIMIZATION 114
5.1 Peak and Average Power Consumption of a Datapath Circuit 114
5.2 ILP Formulations 117

5.2.1 ILP Formulations for DFC 117
5.2.2 ILP Formulations for Multicycling 119

5.3 ILP-Based Scheduler 120
5.3.1 Scheduler using Multiple Voltages and Dynamic Frequency

Clocking 121
5.3.2 Scheduler using Multiple Supply Voltages and Multicycling 124

5.4 Experimental Results 126
5.5 Peak Power Minimization 128

5.5.1 ILP Formulations 128
5.5.1.1 Multiple Supply Voltages and Dynamic Fre-

quency Clocking (MVDFC) 130
5.5.1.2 Multiple Supply Voltages and Multicycling (MVMC) 131

5.5.2 ILP-Based Scheduler 132
5.5.2.1 Scheduling for MVDFC 132
5.5.2.2 Scheduling for MVMC 133

5.5.3 Experimental Results 139

ii

www.manaraa.com

5.6 Conclusions 142

CHAPTER 6 ENERGY AND TRANSIENT POWER MINIMIZATION 143
6.1 Cycle Power Function (CPF) 144

6.1.1 Model 1 : CPF using Mean Deviation 145
6.1.2 Model 2 : CPF using Cycle-to-Cycle Gradient 148

6.2 CPF-Scheduler Algorithm 150
6.3 Experimental Results 157
6.4 Conclusions 164

CHAPTER 7 TRANSIENT POWER MINIMIZATION 166
7.1 Modified Cycle Power Function 167
7.2 Modeling of Non-linearities 170

7.2.1 LP Formulation Involving Sum of Absolute Deviations 170
7.2.2 LP Formulation Involving Fraction 171

7.3 ILP Formulations to Minimize Cycle Power Function 172
7.3.1 Multiple Voltages and Dynamic Frequency Clocking (MVDFC) 173
7.3.2 Multiple Voltages and Multicycling (MVMC) 176

7.4 ILP-Based Scheduling Algorithm 179
7.4.1 CPF-MVDFC Scheduling Scheme 181
7.4.2 CPF-MVMC Scheduling Scheme 182

7.5 Experimental Results 183
7.6 Conclusions 189

CHAPTER 8 POWER FLUCTUATION MINIMIZATION 193
8.1 Power Fluctuation Modeling 194
8.2 Modeling of Non-linearities 197
8.3 ILP Formulations to Minimize Mean Power Gradient 199

8.3.1 Formulations using Multiple Voltages and Dynamic Frequency 199
8.3.2 Formulations using Multiple Supply Voltages and Multicycling 201

8.4 Scheduling Algorithm 204
8.5 Experimental Results 207
8.6 Conclusions 213

CHAPTER 9 VLSI DESIGN FOR DIGITAL WATERMARKING OF IMAGES 214
9.1 Invisible Watermarking in Spatial Domain 214

9.1.1 Spatial Domain Invisible Watermarking Algorithms 216
9.1.1.1 Invisible Robust Algorithm 216
9.1.1.2 Invisible Fragile Algorithm 218

9.1.2 VLSI Architecture for Invisible Spatial Domain Watermarking 220
9.1.2.1 Architecture for Robust Watermarking 220
9.1.2.2 Architecture for Fragile Watermarking 222
9.1.2.3 Overall Chip Architecture 222

9.1.3 Implementation of Spatial Domain Invisible Watermark-
ing Chip 223

9.1.4 Results and Conclusions 227

iii

www.manaraa.com

9.2 Visible Watermarking in Spatial Domain 229
9.2.1 Watermarking Algorithms 229

9.2.1.1 Visible Watermarking Algorithm 1 : 229
9.2.1.2 Visible Watermarking Algorithm 2 : 231

9.2.2 VLSI Architecture 234
9.2.2.1 Architecture for Algorithm 1 : 234
9.2.2.2 Architecture for Algorithm 2 : 236
9.2.2.3 Architecture for the Watermarking Processor : 238

9.2.3 Chip Implementation 239
9.2.4 Results and Conclusions 243

9.3 Invisible and Visible Watermarking in DCT Domain 245
9.3.1 Watermarking Algorithms 246

9.3.1.1 Spread Spectrum Invisible Watermarking In-
sertion Algorithm 246

9.3.1.2 Visible Watermarking Insertion Algorithm 248
9.3.1.3 Algorithm Modification for Hardware Implementations 249

9.3.2 VLSI Architecture 250

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 256

REFERENCES 258

ABOUT THE AUTHOR End Page

iv

www.manaraa.com

LIST OF TABLES

Table 2.1 Datapath Scheduling Schemes using Multiple Supply Voltages 45

Table 2.2 High-Level Synthesis Schemes using Switching Activity Reduction 51

Table 2.3 Relative Performance of Various Schemes Proposed for Peak Power
Minimization 55

Table 2.4 Scheduling Algorithms for Variable Voltage Processor 60

Table 2.5 Design and Synthesis Works on Variable Frequency or Multiple Frequency 67

Table 2.6 Watermarking Chips Proposed in Current Literature 73

Table 3.1 List of Functions used in the TC-DFC Algorithm 79

Table 3.2 List of Variables and Data Structures used in the TC-DFC Algo-
rithm Description 80

Table 3.3 TC-DFC Freqeuncy Selection : from left � right 80

Table 3.4 Vertex Priority List 80

Table 3.5 Cycle Priority List : �������
	�����������������
	����� 82

Table 3.6 Cycle Priority List : ������������	����� 82

Table 3.7 Frequency Selection (From Left to Right in Each Step) 85

Table 3.8 Resource Look-up Table (order, From Left to Right) 85

Table 3.9 List of Functions used in the RC-DFC Algorithm 87

Table 3.10 List of Variables and Data Structures used in the RC-DFC Algo-
rithm Description 89

Table 3.11 Resource Constraints used in our Experiements 93

Table 3.12 Energy Details for Different Benchmarks (for �! �"#���) using RC-
DFC Scheduler 94

Table 3.13 Configurations for Minimum EDP using RC-DFC 95

v

www.manaraa.com

Table 3.14 Energy Savings using TC-DFC Scheduler 95

Table 3.15 Savings for Various Resource Constrained Schedulings 97

Table 3.16 Savings for Various Time Constrained Schedulings 97

Table 4.1 Notations used in Description 100

Table 4.2 Notations used in ILP Formulations 102

Table 4.3 Energy and EDP Estimates for Benchmarks for MVDFC and MVMC
Schemes 111

Table 4.4 Savings for Various Schedulings Schemes 113

Table 5.1 Notations used in Description 115

Table 5.2 Notations used in ILP Formulations 117

Table 5.3 Notations used in Expressing Results 127

Table 5.4 Resource Constraints used for our Experiement 128

Table 5.5 Peak Power, Average Power and PDP Estimates for Benchmarks
using Scheduling Schemes 129

Table 5.6 Peak and Average Power Reduction for Various Scheduling Schemes 131

Table 5.7 Resource Constraints used for our Experiment 139

Table 5.8 Power Estimates for MVDFC and MVMC Scheduling Schemes 140

Table 5.9 Power Reduction for Various Scheduling Schemes 141

Table 6.1 List of Notataions and Terminology used in CPF Modeling 144

Table 6.2 Notations used to Express the Results 158

Table 6.3 Power Estimates for Different Benchmarks (using Model 1) 159

Table 6.4 Power Estimates for Different Benchmarks (using Model 2) 163

Table 7.1 List of Variables used in ILP Formulations 173

Table 7.2 List of Variables used to Express the Results 184

Table 7.3 Power, Energy and EDP Estimates for Benchmarks using MVDFC 186

Table 7.4 Power, energy and EDP Estimates for Benchmarks using MVMC 187

Table 8.1 Notations used in the Description 195

vi

www.manaraa.com

Table 8.2 Notations used in ILP formulations 199

Table 8.3 Notations used in Describing the Results 208

Table 8.4 Power Estimates for Benchmarks 209

Table 9.1 Notations used to Explain Spatial Domain Watermarking Algorithms 216

Table 9.2 Control Signals for Spatial Domain Invisible Watermarking Chip 224

Table 9.3 Power, Area Details for Individual Units 225

Table 9.4 Overall Chip Statistics 226

Table 9.5 List of Variables used in Algorithm Explanation 230

Table 9.6 Power and Area of Different Units 242

Table 9.7 Overall Statistics of the Watermarking Chip 243

Table 9.8 Notations used in the Description of the Algorithm 247

Table 9.9 Overall Statistics of the DCT Domain Watermarking Chip [85] 255

vii

www.manaraa.com

LIST OF FIGURES

Figure 1.1 Chronological Change in Power, Power Density, Transistor Count,
Gate Count, Operating Frequency and Feature Size of CMOS Inte-
grated Circuits 2

Figure 1.2 Desription of Hardware in Different Domains and Abstractions [4] 5

Figure 1.3 Synthesis Flow 6

Figure 1.4 Various Phases of High-Level Synthesis 8

Figure 1.5 Data Flow Graph and Control Flow Graph of a Square Root Algo-
rithm [3] 10

Figure 1.6 Different Types of Scheduling Algorithms 11

Figure 1.7 A Synthesis Example : Step 1 to Step 3 13

Figure 1.8 The Synthesis Example : Step 4 to Step 6 14

Figure 1.9 Sources of Power Dissipation in a CMOS Circuit 15

Figure 1.10 Static Vs Dynamic Power Dissipation for Different Switching Ac-
tivity [6, 7] 17

Figure 1.11 Dynamic Frequency Generation using Dynamic Clocking Unit [54] 23

Figure 1.12 Data Flow Graph in Three Modes of Operation 24

Figure 1.13 Level Converter Schematic Diagram [65, 66] 27

Figure 1.14 Level Converter Layout and Simulation 28

Figure 1.15 Dynamic Clocking Unit : Ranganathan, et. al. [59] 29

Figure 1.16 Dynamic Clocking Unit and Output Clock : Byrnjolfson and Zilic [61] 30

Figure 1.17 Visible Watermarked Image [71] 32

Figure 1.18 General Framework of Digital Watermarking 34

Figure 1.19 Different Types of Watermarks and Watermarking Techniques 36

viii

www.manaraa.com

Figure 1.20 Contributions of this Dissertation 38

Figure 1.21 Energy Vs Peak Power Efficient Schedule 39

Figure 2.1 Variable Voltage Processor Operation : Voltage Vs Frequency [122] 58

Figure 3.1 Level Converters Needed for Stepping up Signal 76

Figure 3.2 HAL Differential Equation Solver (with ASAP labels) 77

Figure 3.3 TC-DFC Scheduling Algorithm Flow 78

Figure 3.4 Pseudo-code for TC-DFC Scheduling Algorithm 81

Figure 3.5 Schedules Obtained for HAL Benchmark for Different Time Con-
straints using TC-DFC 83

Figure 3.6 RC-DFC Scheduling Algorithm Flow 86

Figure 3.7 Pseudo-code for RC-DFC Scheduler 88

Figure 3.8 Final Schedule of FIR Filter DFG (using RC-DFC) 91

Figure 3.9 Average Energy and EDP Reduction for Benchmarks 96

Figure 4.1 ILP Based Scheduling for Low EDP 105

Figure 4.2 Example Data Flow Graph for Multiple Supply Voltages and Dy-
namic Frequency Clocking 106

Figure 4.3 ILP Formulation for Example DFG for Multiple Supply Voltages
and Dynamic Frequency Clocking 107

Figure 4.4 Example DFG (for RC2) (MVMC) 108

Figure 4.5 ILP Formulation for Example DFG for Multiple Supply Voltages
and Multicycling 109

Figure 4.6 Reduction for Different Benchmarks Expressed as Percentage in Average 112

Figure 5.1 ILP-Based Scheduler 121

Figure 5.2 Example DFG for Resource Constraint RC3; using Multiple Sup-
ply Voltages and Dynamic Frequency Clocking 122

Figure 5.3 ILP Formulation for Example DFG using DFC, for RC3 and Switch-
ing Activity = "#��� 123

Figure 5.4 Example DFG for Resource Constraint RC3; using Multiple Sup-
ply Voltages and Multicycling 124

ix

www.manaraa.com

Figure 5.5 ILP Formulation for Example DFG using Multicycling, for RC3
and Switching Activity = "#��� 125

Figure 5.6 Average Reduction for Different Bechmarks 130

Figure 5.7 Example DFG (for RC1) (MVDFC) 133

Figure 5.8 ILP Formulation for Example DFG (MVDFC) 134

Figure 5.9 ILP Formulation for Example DFG (MVDFC) in AMPL 135

Figure 5.10 Example DFG (for RC1) (MVMC) 136

Figure 5.11 ILP Formulation for Example DFG (MVMC) 137

Figure 5.12 ILP Formulation for Example DFG (MVMC) in AMPL 138

Figure 5.13 Average Reductions for Benchmarks 141

Figure 6.1 The CPF-Scheduler Algorithm Flow 152

Figure 6.2 The CPF-Scheduler Algorithm Heuristic 153

Figure 6.3 Cycle Power Consumptions for Resource Constraint RC1 161

Figure 6.4 Cycle Power Consumptions for Resource Constraint RC2 161

Figure 6.5 Cycle Power Consumptions for Resource Constraint RC3 162

Figure 6.6 Cycle Power Consumptions for Resource Constraint RC4 162

Figure 6.7 Percentage Average Reduction for Benchmarks using Model1 164

Figure 6.8 Percentage Average Reduction for Benchmarks using Model2 165

Figure 7.1 Scheduling for $�%'&)(Minimization 180

Figure 7.2 ASAP and ALAP Schedule for Example DFG (used to find Mobil-
ity Graph) 181

Figure 7.3 Mobility Graph and Final Schedule for Example DFG for RC5 us-
ing MVDFC 182

Figure 7.4 Mobility Graph and Final Schedule for Example DFG for RC5 us-
ing MVMC 183

Figure 7.5 Average Reductions in Power or Energy for Benchmarks using CPF-
MVDFC 188

Figure 7.6 Average Reductions for Benchmarks using CPF-MVMC 189

x

www.manaraa.com

Figure 7.7 Power Profile for Benchmark for Resource Constraint RC1 190

Figure 7.8 Power Profile for Benchmark for Resource Constraint RC2 191

Figure 7.9 Power Profile for Benchmark for Resource Constraint RC3 191

Figure 7.10 Power Profile for Benchmark for Resource Constraint RC4 192

Figure 7.11 Power Profile for Benchmark for Resource Constraint RC5 192

Figure 8.1 Scheduling for *+%-, Minimization 205

Figure 8.2 Example Data Flow Graph (DFG) 206

Figure 8.3 Average Reductions using DFC Scheme 210

Figure 8.4 Average Reductions using Multicycling Scheme 211

Figure 8.5 Power Profiles for Benchmarks (for RC2) 212

Figure 8.6 Power Profiles for Benchmarks (for RC3) 212

Figure 8.7 Power Profiles for Benchmarks (for RC5) 213

Figure 9.1 Secure JPEG Encoder : Block Level View [176] 215

Figure 9.2 Secure Digital Still Camera : Schematic View 215

Figure 9.3 Invisible Robust Watermarking in Spatial Domain [177, 178] 217

Figure 9.4 Invisible Fragile Watermarking in Spatial Domain [83, 72] 219

Figure 9.5 Datapath for Robust Watermarking 220

Figure 9.6 Datapath for Fragile Watermarking 221

Figure 9.7 Datapath For Combined Spatial Domain Invisible Robust / Fragile
Watermarking 222

Figure 9.8 Controller For Combined Spatial Domain Invisible Robust / Fragile
Watermarking 223

Figure 9.9 Layout of the Invisible Spatial Domain Watermarking Datapath and
Controller 225

Figure 9.10 Layout of RAM (Zoomed view of a portion is shown) 226

Figure 9.11 Layout of the Proposed Spatial Domain Invisible Watermarking Chip 227

Figure 9.12 Pin Diagram for the Proposed Spatial Domain Invisible Watermark-
ing Chip 227

xi

www.manaraa.com

Figure 9.13 Spatial Domain Invisible Watermarked Shuttle 228

Figure 9.14 Spatial Domain Invisible Watermarked Bird 228

Figure 9.15 Datapath Architectures for the Visible Watermarking Algorithms 235

Figure 9.16 Individual Datapath Units for Algorithm 2 237

Figure 9.17 Architecture for the Proposed Watermarking Processor 239

Figure 9.18 Layout of Datapath and Controller of the Proposed Chip 241

Figure 9.19 Layout and Floor Plan of the Proposed Watermarking Chip 242

Figure 9.20 Pin Diagram for the Proposed Watermarking Chip 243

Figure 9.21 Original Host Images (a, b, and c) and Watermark Image (d) 244

Figure 9.22 Watermarked Images for the First Algorithm 245

Figure 9.23 Watermarked Images for the Second Algorithm 245

Figure 9.24 Combined Architecture for DCT domain Invisible and Visible Wa-
termarking Chip 251

Figure 9.25 Architecture of the Different Units used for Invisible Watermarking 252

Figure 9.26 Architecture of the Different Units used for Visible Watermarking 253

Figure 9.27 Dual Voltage and Dual Frequency Operation of the Datapath 254

Figure 9.28 Layout of the DCT Domain Invisible and Visible Watermarking
Chip [85] 255

Figure 9.29 Floorplan of the DCT Domain Invisible and Visible Watermarking
Chip [85] 255

xii

www.manaraa.com

ENERGY AND TRANSIENT POWER MINIMIZATION DURING BEHAVIORAL
SYNTHESIS

Saraju P. Mohanty

ABSTRACT

The proliferation of portable systems and mobile computing platforms has increased the need

for the design of low power consuming integrated circuits. The increase in chip density and clock

frequencies due to technology advances has made low power design a critical issue. Low power

design is further driven by several other factors such as thermal considerations and environmen-

tal concerns. In low-power design for battery driven portable applications, the reduction of peak

power, peak power differential, average power and energy are equally important. In this disserta-

tion, we propose a framework for the reduction of these parameters through datapath scheduling

at behavioral level. Several ILP based and heuristic based scheduling schemes are developed for

datapath synthesis assuming : (i) single supply voltage and single frequency (SVSF), (ii) multiple

supply voltages and dynamic frequency clocking (MVDFC), and (iii) multiple supply voltages and

multicycling (MVMC). The scheduling schemes attempt to minimize : (i) energy, (ii) energy delay

product, (iii) peak power, (iv) simultaneous peak power and average power, (v) simultaneous peak

power, average power, peak power differential and energy, and (vi) power fluctuation.

A new parameter called ”Cycle Power Function” ./$�%'&10 is defined which captures the transient

power characteristics as the equally weighted sum of normalized mean cycle power and normal-

ized mean cycle differential power. Minimizing this parameter using multiple supply voltages and

dynamic frequency clocking results in the reduction of both energy and transient power. The cycle

differential power can be modeled as either the absolute deviation from the average power or as

the cycle-to-cycle power gradient. The switching activity information is obtained from behavioral

simulations. Power fluctuation is modeled as the cycle-to-cycle power gradient and to reduce fluc-

xiii

www.manaraa.com

tuation the mean power gradient .2*+%-,'0 is minimized. The power models take into consideration

the effect of switching activity on the power consumption of the functional units.

Experimental results for selected high-level synthesis benchmark circuits under different con-

straints indicate that significant reductions in power, energy and energy delay product can be ob-

tained and that the MVDFC and MVMC schemes yield better power reduction compared to the

SVSF scheme. Several application specific VLSI circuits were designed and implemented for

digital watermarking of images. Digital watermarking is the process that embeds data called a

watermark into a multimedia object such that the watermark can be detected or extracted later to

make an assertion about the object. A class of VLSI architectures were proposed for various water-

marking algorithms : (i) spatial domain invisible-robust watermarking scheme, (ii) spatial domain

invisible-fragile watermarking scheme, (iii) spatial domain visible watermarking scheme, (iv) DCT

domain invisible-robust watermarking scheme, and (v) DCT domain visible watermarking scheme.

Prototype implementation of (i), (ii) and (iii) are given. The hardware modules can be incorporated

in a ”JPEG encoder” or in a ”digital still camera”.

xiv

www.manaraa.com

CHAPTER 1

INTRODUCTION

Low power circuit design is a three dimensional problem involving area, performance and

power trade-offs. Because of the decreasing feature size and increasing packing density, it may

be possible to trade area against power [1]. The trend of decreasing device size and increasing

chip densities involving several hundred millions of transistors per chip has resulted in tremendous

increase in design complexity. Designing chips of such complexity using traditional capture and

simulate methodology is time consuming and difficult. The industry has started looking at the

development cycle to reduce design time and to gain a competitive edge. High-level synthesis

of digital circuits has become necessary due to several advantages such as, reduction of design

time, exploration of different design styles, meeting design constraints and requirements [2, 3, 4].

Additionally, this trend of reducing the feature size with increasing the clock frequency has made

reliability a big challenge for the designers, mainly because of high on-chip electric fields [1, 5, 6,

7, 8]. Fig. 1.1 shows the chronologcal change in power, power density, transistor count, gate count,

operating frequency and feature size of CMOS ICs.

High-level synthesis process can be defined as the translation process from behavioral descrip-

tion to its structural description [3, 14, 4, 15]. This is analogous to a ”compiler” that translates a

high-level language program in C/Pascal to an assembly language program. High-level synthesis

is also known as behavioral-level synthesis or algorithm-level synthesis. The constraints which

are to be considered in high-level synthesis are area, performance, power consumption, reliability,

testability and cost. With the increasing demand for personal computing devices and wireless com-

munications equipment, the demand for designing low power consuming circuits has increased.

”Power” has become an important parameter alongwith area and throughput. The need for low

power synthesis is driven by several factors [16, 17, 18, 19, 20]:

1

www.manaraa.com

(a) Increase in Power [8, 9, 10] (b) Increase in Power Density [9, 11, 10]

(c) Increase in Transistor Count [11, 10] (d) Increase in Gate Count [12]

(e) Increase in Frequency [11, 10] (f) Decrease in Feature Size [11, 10, 13]

Figure 1.1. Chronological Change in Power, Power Density, Transistor Count, Gate Count, Oper-
ating Frequency and Feature Size of CMOS Integrated Circuits

2

www.manaraa.com

3 Increased demand for portable systems: Emergence of portable devices like laptop comput-

ers, mobile phones etc. for which battery life is an important factor

3 Thermal considerations: If power dissipation can be reduced, the cost of cooling and pack-

aging would be reduced.

3 Environmental concerns: The smaller the power dissipation in a circuit, lesser the heat

pumped into the rooms. So, the electricity consumption will be lower and impact on the

environment will be less.

3 Reliability issues: If the power consumption is higher, the temperature in the circuit is in-

creased. This may lead to phenomenon like electromigration and hot-electron effects. This

causes reduction in the reliability of the system. In fact, it is seen that for every �4"657$ rise in

operating temperature, roughly doubles the failure rate of the components.

The growth of high speed computer networks and that of the internet, in particular, has explored

means of new business, scientific, entertainment, and social opportunities. Ironically, the cause for

the growth is also of the apprehension - use of digital formatted data. Digital media offer several

distinct advantages over analog media, such as high quality, easy editing, high fidelity copying.

The ease by which a digital information can be duplicated and distributed has led to the need for

effective copyright protection tools. Various software products have been recently introduced in

attempt to address these growing concerns. It is done by hiding metadata (information) within

digital audio, images and video files. One way of such data hiding is digital signature, copyright

label or digital watermark, that completely characterizes the person who applies it and, therefore,

marks it as being his intellectual property. Digital Watermarking is the process that embeds data

called a watermark into a multimedia object such that watermark can be detected or extracted later

to make an assertion about the object. While the software implementation of digital watermarking

techniques are enormously large, the hardware of the same is negligibly small. The hardware

implementation has advantages over the software implementation in terms of low power, high

performance and reliability. Also, the hardware implementation of watermarking techniques is

absolutely essential for real-time watermarking applications, such as of digital TV broadcasting.

3

www.manaraa.com

This chapter presents a general overview of high-level synthesis and power minimization in

VLSI circuits. The chapter is organized as follows. Section 1.1 discusses high-level synthesis in

general and motivation behind high level synthesis. The various sources of power consumption

are discussed in Section 1.2. The possible methods of power reduction are described in Section

1.3. Section 1.4 discusses why we need to minimize peak power. The need for average power

and energy reduction is listed in Section 1.5 and that of transient power is in Section 1.6. Section

1.7 discusses how frequency and voltage scaling can reduce energy / power in a circuit. The

fundamentals of digital watermarking is discussed in Section 1.9. The design issues for multiple

supply voltage and dynamic frequency clocking based circuits are discussed in Section 1.8. Section

1.10 discusses the contribution of this dissertation. The dissertation outline is given in Section 1.11.

1.1 Fundamentals of High Level Synthesis

In circuit analysis, we study the behavior or characterisitcs of a circuit. Synthesis process is

the reverse of analysis process. The task of synthesis process is to take the specifications of the

behavior required for a system and a set of constraints and goals to be satisfied, and to find a

structure that implements the behavior while satisfying the goals and constraints [3, 4, 15, 21].

The ”behavior” of the system refers to the ways in which the system or its components interact

with their environment (mapping from inputs to outputs). The ”structure” refers to the set of

interconnected components that constitute the system (described by a netlist). Finally, the structure

must be mapped into a ”physical” design. Behavior, structure and physical design are considered

as three domains in which a hardware can be described (Fig. 1.2(a) and 1.2(b)). In behavioral

domain, we are interested in what a design does, not in how it is built. The physical domain

ingnores what the design is supposed to do and binds its structure in space or to silicon. A structual

representation bridges the behavioral and physical representation. It is one-to-one mapping of a

behavioral representation onto a set of components and connections under constraints, such as

area, cost and delay.

Fig. 1.2(a) describes the design automation terminologies, such as optimization, synthesis,

analysis, and optimization in the hardware representation domain. The axes in Y-chart (Fig. 1.2(b))

4

www.manaraa.com

Physical / Geometrical Domain

Structural Domain Behavioral Domain

Abstraction

Analysis

Synthesis

Generation

Extraction

Optimization

Refinement

(a) Y-chart : Anaylsis, Optimization or Synthesis

Physical / Geometrical Domain

Structural Domain Behavioral Domain

Circuit Synthesis

RT Synthesis

Logic Synthesis

System Synthesis

Transistor Function

Algorithms

Register Transfer

Boolean Expressions

Transistor Layouts

Cells

Chips

Boards, MCMs

Processors, Memories, Buses

Registers, ALUs, MUXs

Gates, Flip−Flops

Transistors

(b) Y-chart : Detailed Hardware Description

Figure 1.2. Desription of Hardware in Different Domains and Abstractions [4]

5

www.manaraa.com

(Tranformation, Scheduling,
Module Selection)

(Two−Level, Multi−Level
Synthesis)

Allocation or Partitioning)
(Hardware / Software

(Placement, Routing,
Clock Distribution)

System Specifications

Behavioral Description

RTL Description

Gate Level Description

Layout Level Description

High Level Synthesis

System Level Design

Logic Synthesis

Layout Synthesis

Figure 1.3. Synthesis Flow

represent three different domains of description, such as behvaioral, structural and physical. Each

concentric circle intersects the axes at a particular level of representation within a domain. It may

be noted that the synthesis process is a transformation from the behavioral domain to the structual

domain, which is represented as an arc in Fig. 1.2(a).

The digital circuits are designed and synthesised at several levels of abstraction as shown in

Fig. 1.3.

3 System Level: The system level is concerned with the overall system structure and informa-

tion flow. Computer systems are described as interconnected set of processors, memories

and switches in this level.

6

www.manaraa.com

3 Behavioral Level: This level is also called as Instruction Set Level or Algorithmic Level. At

this level the focus is on the computations performed by an individual processor, the way it

maps sequences of inputs to sequences of ouputs.

3 Register Transfer Level: The system is viewed as a set of interconnected storage elements

and functional blocks in this level. The behavior of system is described as a series of data

transfers and transformations between the storage elements.

3 Logic Level: Below the register transfer level is the logic level. The system is described as a

network of gates and flip-flops and the behavior is specified by logic equations at this level.

3 Layout Level: In this level, the system is specified in terms of the individual transistors of

which it is composed. The behavior of the system can be described in terms of the network

equations.

1.1.1 Why High-Level Synthesis ?

High-level synthesis is popular for the following reasons [3]:3 Shorter design cycle: If more of the design process is automated, faster products can be made

available at cheaper prices.

3 Fewer errors: Since the synthesis process can be verified easily, the chances of getting errors

will be less.

3 Ability to search the design space: As synthesis system can produce several designs in a

small time, the designer has more flexibity to choose proper design considering different

trade-offs.

3 Documenting the design process: An automated system can keep track of design decisions

and effect of those decisions.

3 Availability of IC technology to more people: As design expertise is moved into synthe-

sis system, it becomes easier for a non-expert to produce a chip that meets a given set of

specifications.

7

www.manaraa.com

1.1.2 Various Phases of High-Level Synthesis

The various phases of high-level synthesis include, compilation, transformation, scheduling,

allocation, binding as detailed in Fig. 1.4.

 HDL

 Compilation

 Transformation

 Scheduling

 Allocation / Binding

Output Generation

RTL Description

 Data Flow Graph

Figure 1.4. Various Phases of High-Level Synthesis

The behavior of a system to be synthesized is usually specified at the algorithmic level using a

high-level programming language like Pascal, C or a hardware description language such as VHDL

and Verilog [3, 22]. The behavior of the system is then compiled into internal representations,

which are usually data flow graphs (DFGs) and control flow graphs (CFGs). Each behavioral

specification is transformed into an unique graphical representation. The data flow graph is a

8

www.manaraa.com

directed graph which represents the data moves, while the control flow graph is a directed graph

which indicates the sequence of operations. The formal definitions of data flow graph and control

flow are given below [3].

A data flow graph (DFG) is a directed graph ,+ 8./9�:<;)0 , where:

(i) 9= ?>A@4:B>DC�:4�E�E�E:B>�F is a finite set whose elements are ”nodes”, and

(ii) ;= +98GH9 is an asymmetric ”data flow relation”,

whose elements are directed ”data edges”.

A control flow graph (CFG) is a directed graph ,+ 8./9�:<;)0 , where:

(i) 9= ?> @ :B> C :4�E�E�E:B> F is a finite set whose elements are ”nodes”, and

(ii) ;= +98GH9 is a ”control flow relation”,

whose elements are directed ”sequence edges”.

Lets consider the following algorithm that computes the square root of I using Newton’s method

[3].

Algorithm : Square Root CalculationsJ KML N"#���D�POQ"#��RDS�	TI ;UVL W" ;
Do until

UYX[Z
loopKML N"#���
	P. K O�\]^0 ;UVL U O�� ;

End do_
The above algorithm can be represented using the following data flow graph and control flow graph

(Fig. 1.5).

In the transformation step, the initial data flow graph is transformed so that the resultant data

flow graph is more suitable for scheduling and allocation. These transformations include compiler-

like optimizations such as dead code elimination, common subexpression elimination, loop un-

9

www.manaraa.com

*

+

/

+

*

X0.89

0.22

Y

0.5

Y

I

:=

+>

ctl

13

0

I

(a) Data Flow Graph (DFG)

+

:=

*

/

+

>

+

*

True

False

(b) Control
Flow Graph
(CFG)

Figure 1.5. Data Flow Graph and Control Flow Graph of a Square Root Algorithm [3]

rolling, constant propagation and code motion. In addition to this, some hardware-specific trans-

formations like syntactic variances minimization, retiming may be applied to to take advantage of

the associativity and commutativity of certain operations.

Scheduling is the process of partitioning the set of arithmetic and logical operations in the data

flow graph into groups of operations so that the operations in the same group can be executed

concurrently, while taking into consideration possible trade-offs between the total execution cost

and hardware cost. A group of concurrent computations to be executed simultaneously is referred

to as control step. The total number of control steps needed to execute all operations in the data

10

www.manaraa.com

flow graph, the minimum number of functional units of each type to be used in the design, and

the lifetimes of the variables generated during the computation of operations are determined in the

scheduling step. Datapath scheduling algorithms may be of various types based on the constraints

and optimization schemes as shown in Fig. 1.6. Various scheduling algorithms are described in

[4, 21, 22, 3, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 2, 34, 35, 36, 37, 38]. The commonly used

scheduling techniques are integer linear programming, as-soon-as possible, as-late-as possible, list-

based scheduling, force directed scheduling and freedom-based scheduling, etc.

Miscellaneous
Algorithms
can be extended

Iterative
Refinement

Force−Directed
List−Scheduling

Freedom−Based
Scheduling

Scheduling
Symbolic

Genetic
Algorithm

Geometric
Algorithm

Simulated
Annealing

Scheduling Algorithms

Unconstrained
Algorithms

Resource Constrained
Algorithms

Time Constrained
Algorithms

Time and Resource
Constrained Algorithms

Miscellaneous
Algorithms

ASAP

ALAP

List−Based

ILP−Based

Force−Directed

ILP−Based

ILP−Based

Static List

Feasible−Constrained

Path−Based

Figure 1.6. Different Types of Scheduling Algorithms

Allocation is the process of determining functional units of each type for performing opera-

tions, memory units(registers) for storing data values, and interconnects for data transportation.

Binding is the process of assigning variables to memory units, and data transfers to interconnec-

tions. Allocation / binding is further divided into tasks, such as functional unit allocation / binding,

memory unit allocation/binding and interconnect allocation / binding. The functional unit alloca-

tion / binding involves the mapping of operations in the behavioral description into a set of selected

functional units. The memory unit allocation / binding maps data carriers(constants, variables, ar-

rays) in the behavioral description onto storage elements(ROMs, registers, memory units) in the

11

www.manaraa.com

datapath. The interconnect allocation / binding task maps every data transfer in the behavior into a

set of interconnection units for data routing.

In the output generation phase, design output is generated. The output should be in a form, so

that logic-level synthesis tools can optimize the combinational logic, and layout synthesis tools can

design the chip geometry . The generated output is generally in a low level hardware description

language, such as structural VHDL or EDIF [22].

1.1.3 A Synthesis Example

Let us consider a small synthesis example to learn the various phases of synthesis in detail.

Suppose, we want to synthesize hardware to perform the operation : `� a.bI�O K 06	T.c;[de&-0 . The

following self explanatory Figs. (1.7 -1.8) illustrate the steps.

1.2 Sources of Power Dissipation in a CMOS Circuit

The details of power dissipations are shown in Fig. 1.9. Power dissipation in a CMOS circuit

is caused by four sources [17] :

3 Leakage current: It is determined by the fabrication process technology and consists of two

components: (1) reverse bias current in the parasitic diodes formed between source and drain

diffusions and the bulk region in the transistor, and (2) the subthreshold current that arises

from the inversion charge that exists at the gate voltages below the threshold voltage.

3 Standy current: It is the DC current drawn continuously form 9gfhf to ground.

3 Short-circuit current: This is the current due to the DC path between the supply and ground

during output transitions.

3 Capacitance current: This curent flows to charge and discharge capacitance loads during

logic changes.

12

www.manaraa.com

+

*

−

Z <= (X+Y) * (E−F);

VHDL Code (Structural)

X Y E F

DFG

Z

(a) Step1: Compilation and Transformation

+ −

X Y E F

*

Z

+

−

*

X Y E F

Z

CT1

CT2

CT3

CT2

CT1

Two Control Steps

Two operations in parallel

No parallel operationThree Control Steps

(b) Step2: Scheduling (Time or Resource Constraints)

−

X Y E F

CT1

CT2

CT3

+

X Y E F

−

*

Z

+

Register

Register Register

*

Z

Register

ADD

MULT

SUB

ALU

ALU

MULT

1 adder, 1 subtractor and 1 multiplier 1 ALU and 1 multiplier

(c) Step3: Allocation (Fixes Amount and Types of Resources)

Figure 1.7. A Synthesis Example : Step 1 to Step 3

13

www.manaraa.com

−

X Y E F

CT1

CT2

CT3

+

X Y E F

−

*

Z

+

*

Z

Register_A

Register_B

Register_A

Register_B

ALU_J

ALU_K ALU_J

ALU_J

MULT_I MULT_I

(a) Step4: Binding (which Resource will be used by which Operation)

Y

Register_A
E

Sel_B

Sel_A

X
A

L
U

_J

MUX_B Z

Register_B

M
U

L
T

_I

MUX_A

F

(b) Step5: Connection Allocation (Communication between Resources: Bus,
Buffer or MUX)

E
Register_A

F

Sel_B

Sel_A

X

A
L

U
_J

MUX_B Z

Register_B

M
U

L
T

_I
MUX_A

Y

CT1 − Action A = X + Y

Signals : Sel_A, Sel_B, load(Reg_A)

CT2 − Action : B = E −F

Signals : Sel_A, Sel_B, load(Reg_B)

CT3 − Action : Z = A * B

Signals : load(Reg_Z)

DATAPATH

CONTROL

(c) Step6: Architecture Generation (Datapath and Control)

Figure 1.8. The Synthesis Example : Step 4 to Step 6

14

www.manaraa.com

Diode Leakage Sub−Threshold Current

Leakage Standby

Static

Short − Circuit Capacitive Switching

Dynamic

Power Dissipation

Figure 1.9. Sources of Power Dissipation in a CMOS Circuit

Capacitive switching power dissipation is caused by charging and discharging of parasitic ca-

pacitance in the circuit and is given by Eqn. 1.1,

%ifBj F�k<l�m � @C $on�9 Cf<fqpsr (1.1)

where, $tn is load capacitor, 9uf<f is supply voltage, p is average or expected number of transitions

per clock cycle (switching activity), and r is the clock frequency. During transition from either 0

to 1 or 1 to 0, both NMOS and PMOS are ON for a short period of time. Because of this there is

flow of current from 9vf<f to 9vwxw (short current pulse). The power dissipation corresponding to this

is called short-circuit power dissipation which is quantified as in Eqn. 1.2

% wzy 5x{}| ~@�C ./9�f<f�d���9 | 0}� |����|�� (1.2)

where, � is the transistor gain factor, 9�f<f is supply voltage, 9 | is the threshold voltage, � {<� is the

rise/fall time (under the assumption that � { = � �) and � is the period of the input waveform. The

dynamic power dissipation is the sum of the short-circuit and capacitative power dissipations.

The leakage power dissipation occurs because of reverse-biased diode (formed between diffu-

sion regions and substrate) current and subthreshold current. Leakage currents in CMOS circuits

15

www.manaraa.com

can be made small with the proper choice of device technology. Standby power dissipation happens

when both the nMOS and pMOS transistors are continuously on in a psuedo-nMOS inverter, when

the drain of an nMOS transistor is driving the gate of another nMOS transistor in a pass-transistor

logic, or when the tristated input of a CMOS gate leaks away to a value between 9�fhf and ground.

The static-circuit power dissipation is the sum of the leakage and standby power dissipations. The

total static power of a CMOS circuit is obtained using the Eqn. 1.3 as given below (assuming �
number of transistors). In practice, standby power is neglected compared to the leakage power and

static power is assumed to be the leakage power.

%�w | k | m � � Fm���@ leakage current 	 supply voltage � Fm���@T� U diode O U subthreshold � 	 supply voltage
(1.3)

1.3 Methods for Power Reduction in High-Level Synthesis

Leakage power dissipation is small in comparison to other components. In a well designed

circuit, short-circuit power dissipation is less than ��"�� of dynamic power [39]. It is also evident

from Fig. 1.10 [6, 7] that at larger switching activity the static power is negligible compared to the

dynamic power dissipation. This shows that the dynamic power dissipation is the the main power

dissipation that needs to be taken care of. From the dynamic power dissipation expression given in

Eqn. 1.1, we can conclude that the parameters that can be varied to affect power as well as energy

consumption are :

3 supply voltage,

3 the clock frequency,

3 the switching activity per clock cycle at various signals in the circuit,

3 the parasitic capacitance.

It is important to note that these parameters are not independent. It is necessary to take into

account the interactions and trade-offs among these parameters to minimize power consumption

[17]. The key principles used for low-power design are as follows [20, 40] :

16

www.manaraa.com

Figure 1.10. Static Vs Dynamic Power Dissipation for Different Switching Activity [6, 7]

3 using the lowest possible supply voltage

3 using the smallest geometry, highest frequency devices, but operating them at lowest possible

frequency,

3 using parallelism and pipelining to lower required frequency of operation,

3 power management by disconnecting the power source when the system is idle, and

3 designing systems to have lowest requirements on subsystem performance for the given level

functionality.

Based on the above observations, following are the some techniques used to reduce power

consumption in high-level synthesis [41, 22, 1, 9, 42, 40].

3 Transformation: The basic approach is to scan the design space by utilizing various flow

graph transformations with high-level power estimation techniques, and transform data flow

graphs into less power consuming data flow graphs.

17

www.manaraa.com

3 Operator shutdown: The massive switching in large components, such as adders, multipliers

and registers, consume a large amount of power. By disabling the clock signal the internal

nodes remain at static voltage levels and do not consume power.

3 Lower supply voltages: In a CMOS circuit, power consumption decreases quadratically with

voltage while the speed reduction is linear. When intensive computation is not needed, the

supply voltage is lowered and consequently can save power consumption.

3 Mixed voltage circuit: Dual voltages on one IC are attractive enough for commercial consid-

eration. Although such an approach is viable, designers must carefully consider cross-talk

and latch-up issues among others.

3 Increased parallelism: Slower operations can be used on non-time critical paths, while paral-

lelism can be increased to compensate for slower components. The parallel option consumes

less power and has a shorter total delay. However, extra area might be needed to achieve the

parallelism.

1.4 Why Peak Power Minimization ?

With the increase in chip densities and clock frequencies the demand for design of low power

integrated circuits has increased. The literature is rich on efforts to reduce total energy consumption

and average power consumption of the CMOS circuits. At the same time, the reduction of peak

power consumption is essential for the following reasons [43, 5, 8, 44, 45, 46] :

3 to maintain supply voltage levels,

3 to increase reliability and

3 smaller heat sinks and cheaper packaging.

The peak power is the maximum power consumption of the integrated circuit (IC) at any instance

during its execution. If the current flow is large, then the
U��

drop of the interconnects becomes

large which can reduce the supply voltage levels at different parts of a IC. High current flow can

18

www.manaraa.com

reduce reliability because of hot electron effects and high current density. The hot electron effects

may lead to runaway current failures and electrostatic discharge failures. High current density can

cause electromigration failure. It is observed that the mean time to failure (MTF) of CMOS circuit

is inversely proportional to current density (or power density). If the current (power) dissipation

is large, then the heat generated out of the system is large. This in turn, needs bigger sink and

costlier heat dissipation mechanism in order to maintain the operating temperature of the ICs in its

tolerance limit.

1.5 Why Average Power and Energy Reduction ?

Energy and average power reduction is essential for the following reasons [17, 8, 5, 46]:

3 to increase battery life time,

3 to enhance noise margin,

3 to reduce cooling and energy costs,

3 to reduce use of natural resources, and

3 to increase system reliability.

The battery life time is determined by the �
� (ampere hour) rating of the battery. If the average

power (and/or energy) consumption is high, then battery life time may reduce because of high

ampere consumption. This factor is important for portable applications. The reduction of average

power is essential to enhance noise margin (to decrease functional failure). The cost of packaging

and cooling is determined by average current flow and hence, the average power and energy. The

high energy consumption of the computer systems leads to environment concerns due to the need

for more power generation. If the average power is large, the operating temperature of the chip

increases, which may lead to failures. It is estimated that for each �4"�57$ increase in the operating

temperature, the failure rates of the components is roughly doubled.

19

www.manaraa.com

1.6 Why Transient Power Minimization ?

Both the peak power and peak power differential describe the transient power characteristics of

a CMOS circuit. In the above section we discussed the needs for peak power reduction. The peak

power differential needs to be reduced for the following reasons [8, 5, 47, 48]:

3 to reduce power supply noise,

3 to reduce cross talk and electromagnetic noise,

3 to increase battery efficiency and

3 to increase reliability.

Power fluctuation leads to larger f mf | causing power supply noise, (similar to
U��

drop), because of

self inductance of power supply lines. Crosstalk is the noise voltage induced in signal line due to the

switching in another signal line [5]. The voltage induced by the mutual inductance is expressed as� f mf | and that induced by the mutual capacitance as $ fB�f | . If the power fluctuation is high, then largef mf | and
fB�f | can introduce significant noise in the signal lines. As the power fluctuation increases,

it reduces the electrochemical conversion and hence there is decrease in battery life [49]. High

current peaks (power fluctuation) in short time spans can cause high heat dissipation in a localised

area of silicon die which may lead to permanent failure of the integrated circuit.

1.7 Why Frequency and Voltage Scaling ?

With the increasing demand for portable electronic devices, power reduction has emerged as a

major design goal in VLSI circuits. Let us consider the following equations for a CMOS circuit

[50, 51, 52, 53, 54, 55, 56] :

3 Energy dissipation per operation is

;�f<j F�k<lTm � +$o� �7� 9 Cf<f (1.4)

where, $t� �7� is the effective switched capacitance and 9�f<f is the supply voltage,

20

www.manaraa.com

3 Power dissipation for the operation is

%ifBj F�khlTm � W$o� �7� 9 Cf<f r (1.5)

where, r is the frequency.

3 Further, the critical delay (�hf) in a device that determines the maximum frequency (r lok<�) is

�xf� N� 9�f<f./96fhf�d!9 | 0x (1.6)

where, 96¡ is the threshold voltage, � is a technology dependent factor and � is a constant.

From the above three equations, the following can be deduced [50, 52, 57, 9, 54, 55, 58] :

3 By reducing only 9uf<f , both energy and power can be saved at the cost of performance (speed

/ time).

3 Slowing down CPU by reducing only r will save power but not energy.

3 However, by scaling frequency and voltage in a coordinated manner, both energy and power

can be saved while maintaining performance.

The third factor above forms the major motivation for this work. The objective is to generate a

datapath schedule that attempt at energy and power reduction without degrading the performance

by using multiple voltages and dynamic frequency clocking in a co-ordinated manner. Moreover,

simultaneous voltage and frequency reduction opens oppurtunity for power reduction in three folds.

In this dissertation, we investigate the power and energy reduction due to combined use of multiple

supply voltages, dynamic frequency clocking, and multicycling.

1.8 Multiple Supply Voltages, Dynamic Clocking and Multicycling Preliminaries

In Section 1.7, we have seen that voltage and frequency need to be varied in a co-ordinated

manner to get better results in terms of power, energy or performance. Dynamic frequency clocking

is a mechanism to vary clock frequency on the fly depending on the computation. In multiple supply

21

www.manaraa.com

voltage scheme, different modules or functional units are operated at different supply voltages.

Similarly, variable voltage scheme is a technique in which the operating voltage is valid from time

to time. This chapter discusses how energy and power reduction can be achieved through the use

of dynamic frequency clocking, voltage scaling multicyling. Further, the design related issues

of having multiple supply voltages in a processor are discussed. Design of level converters and

dynamic frequency clocking units are also presented.

1.8.1 What is Dynamic Frequency Clocking ?

In dynamic frequency clocking, the functional units can be operated at different frequencies

depending on the computations occuring within the datapath during a given clock cycle. The

strategy is to schedule high energy units, such as multipliers at lower frequencies such that they

can be operated at lower voltages to reduce energy consumption and the low energy units, such as

adders at higher frequencies, to compensate for speed. In this clocking scheme, all the units are

clocked by a single clock line which switches at run-time. A clocking mechanism that varies the

clock frequency dynamically has been shown to improve the execution time as compared to using a

uni-frequency global clock [59]. Generation of such types of clocks have been studied extensively

in [60, 61, 62, 63]. Fig. 1.11(a) shows the uni-frequency and dynamic frequency diagrams.

The dynamic clocking unit (DCU) which generates the required clock frequency uses a clock

divider strategy to generate frequency which are submultiples of the base frequency. Base fre-

quency r�¢ k£w � is the maximum frequency (or multiple of maximum) of any functional unit (FU) at

the maximum supply voltage. A value ¤ ru¥ � (cycle frequency index for control step ¤) is loaded as

an input to the DCU which comes from controller. The scheme for dynamic frequency generation

is shown in Fig. 1.11(b). Loading a value of ¤ ru¥ � into the counters provide a divided output clock

of frequency �z¦�§B¨b©� � m«ª .

1.8.2 Energy or Power Reduction Due to Voltage or Frequency Scaling

To understand how multiple supply voltage, variable frequency and multicycling can be helpful

in energy or power reductions, let us consider the small data flow graph shown in Fig. 1.12(a).

22

www.manaraa.com

=

=

Clock Cycle 1 Clock Cycle 2

Clock Cycle 1 Clock Cycle 2

Clock Cycle 3

Clock Cycle 3

Clock Cycle 1

=

Clock Cycle 2 Clock Cycle 3=

Clock Cycle 1 Clock Cycle 2 Clock Cycle 3

(a) Single Frequency Vs Dynamic Frequency

cficfbase /

fbase

cfic

Dynamic Clocking Unit

(DCU)

(b) Dynamic Frequency Generation

Figure 1.11. Dynamic Frequency Generation using Dynamic Clocking Unit [54]

Let us analyse the power, energy consumption for this data flow graph in three possible modes

of datapath operation, such as (i) single supply voltage and single frequency, (ii) multiple supply

voltage and variable or dynamic frequency, and (iii) multiple supply voltage and multicycling [54,

55, 64]. Let � k and � l be the delays of the adder and the multiplier respectively at the maximum

supply voltage 9 . The DFG is scheduled to three control steps.

Single supply voltage and single frequency (SVSF) : Each cycle has clock width determined by the

slowest operator delay �Bl . The total energy consumption is given by ; w � 8��;�l¬O¬��;�k and the

total delay is � w � Z �xl . In this case, the peak power consumption is given by, % � kh¯® w � ±°�²�³�° §| ² .

Multiple supply voltages and dynamic frequency (MVDFC) : Let, ;µ´l and ;¶´k are some energy val-

ues less than ;Pl and ;�k respectively and � ³l be the delay of the multiplier at lower voltage 9 ´ . In

data flow graph shown in Fig. 1.12(a), assuming that, the clock cycle width for the
Z rd cycle is �Bk

which is smaller than �Bl . This allows us to increase the clock width of some other cycles from �£l
to some � ³l without violating the time constraints (or without time penalty). In this case, the total

23

www.manaraa.com

tm

tm

tm V

Em

Em

Ea

Ea

tm+

ta

tmV V

V

V

VV

E*

+

V

+*

−
m

Em

E
−

−
a

Ea

−
Cycle1

Cycle2

Cycle3

 Single Frequency Dynamic Frequency

(a) Data Flow Graph : Variable Frequency Vs Single Frequency

* tm

tm

tm

+

+

t

*

Em

E

E

V

VV

V

EaVm

m/2

a

Em/2

−

−

−

−

Cycle1

Cycle2

Cycle3

Cycle4

Multicycling

(b) Data Flow Graph : Multicycling · Performance
Degradation

Single Voltage and Single Frequency Multiple Supply Voltages and Multicycling

+

*

+

*
+

*

+

*

(c) Data Flow Graph : Multicycling · No Performance Degradation

Figure 1.12. Data Flow Graph in Three Modes of Operation

24

www.manaraa.com

delay ��f � � �� ³l Os�zl¸Os�xk and the energy consumption is given by ;�f � � �;�l¸O¸;PkiO¸;V´l O¸;V´k .

Since, �gf � � �W� w � and ;Pf � �
¹ ; w � , energy reduction is achieved without degrading performance.

Energy overhead of level converters have to be considered for this case. The peak power consump-

tion is given by, % � kºq® f � � °�²�³�°�»§| ² .

Multiple supply voltages and multicycling (MVMC) : In this mode of operation, the functional

units are operated at multiple supply voltages. The functional units operating at low voltage are

made to run in more than one consecutive control steps. Let us assume that multiplier takes

two control steps, when it is operated at a lower supply voltage. The example data flowgraph

for the multicycling case in shown in Fig. 1.12(b). In this case, the total energy consumption;�l � ±;�l�O?;V´l ON��;�k and total delay ��l � ½¼D�xl . Since, ��l � X � w � and ;�l � ¹ ; w � , en-

ergy reduction is obtained with a degradation in performance of the circuit. For the multicycling

case, level converters are the only overheads. The peak power consumption of the DFG will be

determined by the multiplication operation in control step 1, % � kºq® l � ¾°v²| ² . This is based on the

observation that the power consumption of the multipliers are much higher than that of the adders.

It may be noted the above mentioned performance degradation may not always happen. For exam-

ple, consider a DFG such as the one shown in Fig. 1.12(c); although the multiplier is scheduled in

two control steps there is no change is the critical path delay. The delay is
Z �¿l for both SVSF and

MVMC cases.

1.8.3 Issues in Multiple Supply Voltage Based Design

A designer needs to take into consideration several design issues when a multiple voltage design

is targeted for fabrication. The effects of multiple voltage operation on IC layout and power supply

requirements should be considered [65, 66, 67]. Multiple voltage design may affect IC design in

the following ways :

3 If the multiple supplies are generated off-chip, additional power and ground pins will be

required.

25

www.manaraa.com

3 It may be necessary to partition the chip into separate regions, where all modules in a region

operate at the same voltage.

3 Some kind of isolation will be required between the regions operated at different voltages.

3 There may be some limit on the voltage difference that can be tolerated between the regions.

3 Protection against latch-up may be needed at the logic interfaces between regions of different

voltages.

3 New design rules for routing may be needed to deal with signals at one voltage passing

through a region at another voltage.

3 Choice between generating the voltage on-chip or off-chip has to be made depending on the

application.

3 Clocking scheme needs to be modified.

1.8.4 Level Converter Design

We already know that whenever one resource has to drive an input of another resource operating

at a different voltage, a level conversion is needed. Thus, level-converter or level-shifter is the most

essential component for multiple supply voltage designs. This results in overheads in the form of

area and power for multiple supply voltage designs as compared to single supply voltage designs.

Four possible alternatives are used by various researchers as listed below [65].

3 The level conveters can be omitted.

3 A chain of inverters can be used at successive higher voltages.

3 An active or passive pullup can be used.

3 A differential cascode voltage switch (DVCS) can be used.

Various level converter designs have been discussed in [66, 68, 69, 67, 65]. We implemented

the level converter design proposed in [65, 66] to get better understanding. The schematic diagram,

26

www.manaraa.com

Figure 1.13. Level Converter Schematic Diagram [65, 66]

the layout and the simulation waveform is given in Fig. 1.13, 1.14(a) and 1.14(b) respectively. The

constant output voltage indicates that the level converter can step up or step down the voltage to

produce a constant supply voltage.

1.8.5 Dynamic Frequency Clocking Unit Design

Dynamic frequency scaling is an efficient power reduction method with large potential power

savings. In order to exploit dynamic frequency scaling for energy or power reduction, a clock

divider is needed to safely change the clock rates. In this section, the design of two such dynamic

frequency clocking units present in the existing literature [59, 61] are described.

27

www.manaraa.com

(a) Level Converter Layout

(b) Level Converter Simulation Waveform

Figure 1.14. Level Converter Layout and Simulation

Ranganathan, Vijaykrishnan and Bhavanishankar [59] introduce the concept of dynamic fre-

quency clocking. The DFC scheme is more suitable for data flow intensive application (such as

DSP and image processing). In dynamic frequency clocking scheme, frequency switching occurs

based on the units being used and on single clock which drives all the units. The dynamic clocking

unit (DCU) generates different clock frequencies based on instruction words. The block diagram

of the DCU is shown in Fig. 1.15. The DCU is a series of cascaded clock divider stages whose

inputs are controlled by the pass logic blocks. The output of one clock divider is presented at the

input of the next stage when the pass logic is enabled. The pass logic block is controlled by a set

of signals generated by the enable encoder. Based on the instruction class, the appropriate pass

28

www.manaraa.com

 Pass

Logic

 Pass

Logic

 Pass

Logic

Divide

Logic

Divide

Logic

 Enable

 Encoder

Input

 Clock

(400 MHZ)

Divide

By Two

(T−FF) (T−FF) (T−FF)

E[2] E[1] E[0]

E[2:0]

4

Instruction

Word

Clk1

Clk2

Clk3

Clk4

4:1 MUX

O/P

 Clock

S[1:0]Encoder

Clock

Figure 1.15. Dynamic Clocking Unit : Ranganathan, et. al. [59]

logic blocks are activated by the enable encoder. The master clock is accordingly divided by clock

divider circuit to generate the resultant output clock.

Brynjolfson and Zilic [61] propose a dynamic programmable clock divider (DPCD) to use in

conjugation with FPGA clock managers. Clock division by ordinary clock dividers can lead to

glitches or distortions of the output clock. Distortions at the output clock can result in metastability

and latching errors. The DPCD is capable of performing dynamic frequency division without

undesired effects at the output. The circuit is shown in Fig. 1.16(a). Division of the input clock

is performed by creating a loop of D-flip-flops
J
A-D

_
driven by the input clock, and feeding the

signal back into the loop thorugh an inverter
J
D
_

to create the necessary clock inversion. To expand

the length of the output clock, the number of D-flip-flops in the loop is increased by multiplexorJ
L
_
. In order to perform an odd division, flip-flops

J
E, F

_
extend the loop, by half a period, with an

asynchronous clear of flip-flop
J
A
_

on the falling edge of the input clock. For the divider output,

multiplexer
J
N
_

chooses between the original input clock, for a divison of one, and the output ofJ
A
_
. The output generated by the DPCD is shown in Fig. 1.16(b). To prevent output glitching,

D-flip-flops
J
G,H,J,K

_
latch the new program value on the rising edge of the output from

J
A
_
.

Combinational logic
J
Q,R,S

_
also help to prevent glitching, but also prevent transient patterns

from being captured and fed back, thus causing irregular oscillation in the circuit.

29

www.manaraa.com

LDIV0

LDIV1

LDIV2

LDIV3

DIV0

DIV1

DIV2

DIV3

DIV1

DIV0

DIV2

DIV3

DIV3

DIV2

DIV1

clock

DIV2 DIV3

D
IV

2

D
IV

3

clock

CLR
CLRN

 A
B C D

G

H

J

K

M

E F

L

P

Q

R S

N

C
L

R
N

D
IV

3

C
L

R
N

C
L

R
N

C
L

R
N

C
L

R
N

C
L

R
N

DIV1

CLR
U

T

A
B
S

Y

ABS

Y

O
U

T

S1 S0 IN
0

IN
1

IN
2

IN
3

Q0
Q1 Q2 Q3

D

D

D

D

D D

D
D D D

Q

Q

Q

Q

Q
Q Q Q

QQ

OUTPUT

C
L

R
N

MULTIPLEXOR

M
U

L
T

IP
L

E
X

O
R

(a) Dynamic Clocking Unit

(b) Output Clock Generated

Figure 1.16. Dynamic Clocking Unit and Output Clock : Byrnjolfson and Zilic [61]

30

www.manaraa.com

1.9 Fundamentals of Digital Watermarking

Digital watermarking technology is an emerging field in computer science, cryptography, signal

processing and communications. Digital Watermarking is intended by its developers as the solution

to the need to provide value added protection on top of data encryption and scrambling for content

protection. Like other technology under development, digital watermarking raises a number of

essential questions as follows.

3 What is it?

3 How can a digital watermark be inserted or detected?

3 How robust does it need to be?

3 Why and when are digital watermarks necessary?

3 What can watermarks achieve or fail to achieve?

3 How should digital watermarks be used?

3 How might they be abused?

3 How can we evaluate the technology?

3 How useful are they, that is, what can they do for content protection in addition to or in con-

junction with current copyright laws or the legal and judicial means used to resolve copyright

grievances?

3 What are the business opportunities?

3 What roles can digital watermarking play in the content protection infrastructure ?

3 And many more ...

31

www.manaraa.com

Figure 1.17. Visible Watermarked Image [71]

1.9.1 General Framework for Watermarking

Watermarking is the process that embeds data called a watermark or digital signature or tag or

label into a multimedia object such that watermark can be detected or extracted later to make an

assertion about the object [70]. The object may be an image or audio or video. A simple example

of a digital watermark would be a visible ”seal” placed over an image to identify the copyright, one

such example is shown in Fig. 1.17. However, the watermark might contain additional information

including the identity of the purchaser of a particular copy of the material.

In general, any watermarking scheme (algorithm) consists of three parts [72].

3 The watermark.

3 The encoder (insertion algorithm).

3 The decoder and comparator (verification or extraction or detection algorithm).

Each owner can use an unique watermark for all objects or an owner can use different watermarks

in different objects. The marking algorithm incorporates the watermarks into the object. The

verification algorithm authenticates the object determining both the owner and the integrity of the

object. A watermark must be detectable or extractable to be useful. Depending on the way the

32

www.manaraa.com

watermark is inserted and also on the nature of the watermarking algorithm, the method used can

involve very distinct approaches. In some watermarking schemes, a watermark can be extracted

in its exact form, a procedure we call watermark extraction. In other cases, we can detect only

whether a specific given watermarking signal is present in an image, a procedure we call watermark

detection. It should be noted that watermark extraction can prove ownership whereas watermark

detection can only verify ownership.

Fig. 1.18(a) illustrates the encoding process. Let us denote an image by
U
, a signature byÀ NÁ�@4:hÁqC�:4�E�E�E� and the watermarked image by ÂU . ; is an encoder function, it takes an image

U
and

a signature
À

, and it generates a new image which is called watermarked image ÂU , mathematically,

;�. U : À 0� ÃÂU (1.7)

It should be noted that the signature
À

may be dependent on image
U
. In such cases, the encoding

process described by Eqn. 1.7 still holds.

A decoder function Ä takes an image Å (Å can be a watermarked or un-watermarked image,

and possibly corrupted) whose ownership is to be determined and recovers a signature
ÀÇÆ

from the

image. In this process an additional image
U

can also be included which is often the original and

un-watermarked version of Å . This is due to the fact that some encoding schemes may make use

of the original images in the watermarking process to provide extra robustness against intentional

and unintentional corruption of pixels. The decoding process can be expressed mathematically as,

Ä=.zÅ�: U 0� À Æ (1.8)

The extracted signature
À Æ

will then be compared with the owner signature sequence by a

comparator function $ÇÈ and a binary output decision generated. It is � if there is match and "
otherwise, which can be represented as follows.

$oÈ � À Æ : À �
ÉÊË ÊÌ ��: c ÍQÎ"#: otherwise

(1.9)

33

www.manaraa.com

’Image (I)

Signature (S)

Watermarked
E

Original

Image (I)

Encoder

(a) Watermarking Encoder

’Signature(S)
Cδ

Test Image (J)

Original Signature (S)

Extracted

Original Image (I)

D
x

Decoder Comparator

(b) Watermarking Decoder

’Signature(S)

Extracted

Signature(S)

Comparator

Original

c x
C δ

(c) Watermarking Comparator

Figure 1.18. General Framework of Digital Watermarking

34

www.manaraa.com

Where $ is the correlator, Ï� Ð$ÇÈ�. ÀiÆ : À 0 . ¤ is the correlation of two signatures and Î is cer-

tain threshold. Without loss of generality, watermarking scheme can be treated as a three-tupple.c;V:<ÄH:º$oÈ70 . Figs. 1.18(b) and 1.18(c) demonstrate the decoder and the comparator.

1.9.2 Types of Watermarking

Watermarks and watermarking techniques can be divided into various categories. The water-

marks can be applied in spatial domain or frequency domain. It has been pointed out that the

frequency domain methods are more robust than the spatial domain techniques. Different types

of watermarks are shown in the Fig. 1.19(a). Watermarking techniques can be divided into four

categories according to the type of document to be watermarked as follows.

3 Image Watermarking

3 Video Watermarking

3 Audio Watermarking

3 Text Watermarking

According to the human perception, the digital watermarks can be divide into four different types

as follows.

3 Visible watermark

3 Invisible-Robust watermark

3 Invisible-Fragile watermark

3 Dual watermark

Visible watermark is a secondary translucent overlaid into the primary image [72, 73, 74, 75,

76, 77]. The watermark appears visible to a casual viewer on a careful inspection. The invisible-

robust watermark is embed in such a way that alternations made to the pixel value is perceptually

not noticed and it can be recovered only with appropriate decoding mechanism [70, 78, 79, 80, 81].

35

www.manaraa.com

According to
Working

Non−invertibleInvertible Quasi−invertible Nonquasi−invertiblePublicPrivate

FragileRobust

TextVideoAudioImage DualVisibleInvisible

Based
Destination

Based
Source

Domain
Frequency

Domain
Spatial

Application
According toAccording to

Watermarking

Domain
Type of

Document
Human

Percpetion

According to

(a) Types of Watermarking

Image(I) Watermarking Image(I’)

Original Invisible

Watermarking

Visible WatermarkedVisible Dual Watermarked

Image(I")

(b) Dual Watermarking

Figure 1.19. Different Types of Watermarks and Watermarking Techniques

36

www.manaraa.com

The invisible-fragile watermark is embedded in such a way that any manipulation or modification

of the image would alter or destroy the watermark [82, 83, 84]. Dual watermark is a combination

of a visible and an invisible watermark [83]. In this type of watermark an invisible watermark is

used as a back up for the visible watermark as clear from the following diagram (Fig. 1.19(b)).

An invisible robust private watermarking scheme requires the original or reference image for

watermark detection; whereas the public watermarks do not. The class of invisible robust water-

marking schemes that can be attacked by creating a ”counterfeit original” (to be discussed in later

sections) is called invertible watermarking scheme. Using mathematical notations from Section

1.9.1, an invisible robust watermarking scheme .c;V:<ÄH:º$�È70 is called invertible if, for any water-

marked image ÂU , there exits a function ;Ñ´ @ such that (1) ;Ñ´ @ . ÂU 0� ±. U Æ : ÀiÆ 0 , (2) ;Y. U Æ : ÀiÆ 0� ±. ÂU 0
and (3) $oÈ�.cÄs.�ÂU 0º: À Æ 0- Ò� , where ; ´ @ is a computationally feasible function,

À Æ
belongs to the

set of allowable watermarks, and the images
U

and
U Æ

are perceptually similar. Otherwise, the

watermarking scheme is non-invertible.

A watermarking scheme .c;Ñ:<ÄÓ:º$ÇÈ70 is called quasi-invertible if, for any watermarked image ÂU ,
there exits a function ; ´ @ such that (1) ; ´ @ .�ÂU 0� M. U Æ : À Æ 0 , (2) $tÈ�.cÄ¸.�ÂU 0º: À Æ 0T a� , where ; ´ @ is a

computationally feasible function,
ÀTÆ

belongs to the set of allowable watermarks, and the images
U

and
U Æ

are perceptually similar. Otherwise, the watermarking scheme is nonquasi-invertible.

From application point of view, digital watermark could be either source based or destination

based. Source-based watermark are desirable for ownership identification or authentication where

a unique watermark identifying the owner is introduced to all the copies of a particular image being

distributed. A source-based watermark could be used for authentication and to determine whether

a received image or other electronic data has been tampered with. The watermark could also be

destination-based where each distributed copy gets a unique watermark identifying the particular

buyer. The destination -based watermark could be used to trace the buyer in the case of illegal

reselling.

The research in digital watermarking is well matured. The software implementation of the

proposed algorithms are significantly large, whereas the hardware implementation of the algorithms

is lacking. The hardware implementation has advantages over the software implementation in terms

37

www.manaraa.com

Time Constrained Energy

Transient Power

Peak power Resource Constrained Energy

Heuristic−Based MinimizationILP−Based Minimization

Energy Delay Product

Power Fluctuation

Peak and Average Power

Transient Power

(Datapath Scheduling)

Synthesis

Dissertation

Spatial Domain Invisible

Spatial Domain Visible

DCT Domain Visible

DCT Domain Invisible

(Watermarking Chips)

Design

Figure 1.20. Contributions of this Dissertation

of low power, high performance and reliability. In this dissertation, we develop hardware system

that can insert invisible-robust, invisible-fragile, visible spatial domain as well as DCT domain

watermark in the image. The hardware module can be easily incorporated in JPEG encoder to

develop a secure JPEG encoder. It may be noted that the corresponding watermark extraction

module has to be inbuilt in a secure JPEG decoder. The secure JPEG codec can be a part of a

scanner or a digital camera so that the digitized images are watermarked right at the origin.

1.10 Contributions of this Dissertation

The contributions of this dissertation are in two broad categories, such as scheduling algorithms

for low power behavioral synthesis and the design of application specific integrated circuits for

digital watermarking. Fig. 1.20 outlines the contributions of this dissertation in detail.

During low power synthesis at behavioral level, several low power subtasks, such as, schedul-

ing, allocation and binding are performed. In this dissertation, scheduling schemes are proposed

to reduce peak power, average power, peak power diffential, power fluctuation and energy at be-

38

www.manaraa.com

* *

+

+

*

* +

+

1 2

3

4

1

2

3

4

3.3 V 3.3 V

5.0 V

5.0 V

3.3 V

3.3 V

5.0 V

5.0 V

c1

c2

c3

(a) Energy Efficient Schedule (b) Peak Power Efficient Schedule

Figure 1.21. Energy Vs Peak Power Efficient Schedule

havioral level using integer linear programming(ILP) models and also using heuristics based al-

gorithms. First, different power models are developed to capture the power characteristics of a

datapath circuit. Then, datapath scheduling schemes are developed using multiple supply voltages

and dynamic frequency clocking (MVDFC), multiple supply voltages and multicycling(MVMC).

Both these schemes are compared with single voltage and single frequency(SVSF) scheme.

To have a clear understanding of the scheduling for energy and peak power minimization, let

us refer to data flow graph(DFG) in Fig. 1.21. The figure shows two different possible schedules of

the same DFG using multiple supply voltage scheme. Since, in both cases there are two multipliers

operating at
Z � Z 9 and two adders operating at �A�Ô"�9 , the energy and average power consumption

of both scheduled DFGs is the same. However, the peak power consumption in Fig. 1.21(b) is less

than that in Fig. 1.21(a). The approach in this thesis is to generate peak power efficient schedules

similar to the one in Fig. 1.21(b).

A class of VLSI architecture are proposed for digital image watermarking implementing a set

of watermarking algorithms. Several CMOS VLSI circuits are designed and implemented as pro-

totype circuit design, which can be icorporated in a JPEG encoder or a digital still camera. The

VLSI implementation of spatial domain watermarking architectures using "#� Z ��Õ CMOS technol-

ogy is given. To our knowledge, this is the first watermarking chip implementing invisible-robust,

invisible-fragile and visible watermarks together. Also, to our knowledge, this is the first water-

39

www.manaraa.com

marking chip having spatial visible watermarking capability. In this dissertation, we also propose

the architecture for DCT domain invisible and visible watermarking algorithms. The prototype im-

plementation of DCT domain invisible and visible watermarking architecture using "#���D��Õ CMOS

technology is given in [85].

1.11 Dissertation Outline

The remainder of the dissertation is organized as follows: Chapter 2 describes the related work

in the areas of low power high-level synthesis, variable clocking based systems and the hardware

based watermarking schemes. The fundamental concepts of multiple suppy voltages, dynamic fre-

quency clocking and multicycling is introduced in Chapter 1.8. This also describes how energy /

power reduction is obtained by use of dynamic frequency clocking and multiple supply voltages in

a VLSI circuit. In Chapter 3, heuristic based resource and time constrained algorithms are devel-

oped for energy efficient datapath scheduling. Chapter 4 discusses the datapath scheduling scheme

for synthesis of energy efficient high performance datapath achieved through energy delay product

(EDP) minimization. In Chapter 5, the simultaneous reduction of both peak and average power is

discussed. This will also include a section on peak power minimization. A heuristic based frame-

work is given in Chapter 6 for simultaneous minimization of various power parameters. Chapter 7

elaborates transient power minimization through datapath scheduling using ILP-Based models. In

this case the cycle difference power is modeled as absolute deviation from mean cycle power (an

estimate of average power). The power fluctuation of a datapath circuit is characterised as cycle-

to-cycle power gradient in Chapter 8. To achieve the reduction in power fluctuation of a datapath

circuit, ILP-based scheduling schemes are developed that minimizes mean power gradient (MPG).

VLSI designs for digital watermarking of images are proposed in Chapter 9. This includes three

designs, one for invisible spatial domain watermarking, one for visible spatial domain watermark-

ing followed by a DCT domain visible and invisible watermarking chip. Conclusions and future

directions of research are discussed in Chapter 10.

40

www.manaraa.com

CHAPTER 2

RELATED WORK

The energy consumption of a CMOS circuit is dependent on the supply voltage and the effective

switching capacitance. Several datapath scheduling algorithms have been proposed in the literature

optimizing either one or both of the above parameters for energy reduction. Moreover, variable

frequency or multiple frequency operations are also considered as options for power reduction. In

this chapter, the various related works are classified as, methods based on voltage reduction, and

those based on switching activity reduction. A few research works are based on using multiple,

dynamic or variable frequency for synthesis of low power or high performance systems can be

found in the literature. This chapter briefly outline these works and further discuss, hardware

designs for digital watermarking.

In this chapter, a brief overview of existing literature on energy and power reduction in VLSI

circuits is presented. Section 2.1 presents existing works in the low power datapath scheduling

methods for energy or average power reduction using lower supply voltages. The high-level syn-

thesis works that achieve energy or average power minimization by reducing the load capacitance

or switching activity in a circuit are presented in Section 2.2. Section 2.3 presents a brief overview

of literature on datapath scheduling methods for peak power and transient power reduction in a

circuit. The scheduling schemes for variable voltage processor core based systems are presented

in Section 2.4. In the past frequency scaling or variable latency concepts have been used for the

development of either low power or high-performance systems. Section 2.5 reviews such research

works proposed in the literature. The design works based on multiple supply voltages are also

included in Section 2.5. The hardware based watermarking systems are discussed in Section 2.6.

41

www.manaraa.com

2.1 Datapath Scheduling for Energy or Average Power Reduction using Voltage Reduction

It is known that voltage reduction is one of the effective methods of power reduction since the

power or energy consumption is quadratically dependent on the supply voltage. In this section,

we review the works poposed from the literature using multiple supply voltages during datapath

scheduling for minimization of energy or average power.

Johnson and Roy [86, 87] present a method called Minimum Energy Schedule with Voltage

Selection (MESVS) based on Integer Linear Programming(ILP) to optimize the schedule, supply

voltage levels, and allocation of resources. The MESVS algorithm takes a directed acyclic data

flow graph, the allowable set of supply voltages, a limit on the number of supply voltages that can

be selected, a minimum difference between the voltages that can be selected, average switching ac-

tivity values for each datapath operation, nominal propagation delay and average energy dissipation

values for each datapath resource as inputs. The objective function for MESVS is an estimate of

datapath energy dissipation expressed as a function of supply voltages. The outputs of the MESVS

algorithm are the following : (i) a datapath schedule (represented by scheduled data flow graph),

(ii) an energy estimate, (iii) selection of optimal set of supply voltages, (iv) assignment of supply

voltage to each operation and (v) allocation of resources to each supply voltage. Since the different

resources need to operate at different voltages level conversion is needed. There are four possible

schemes, such as omitting the level converter, using a chain of inverters, using an active or passive

pullup and using dual cascade voltage switch (DCVS) circuit. The authors claim that energy sav-

ings in the range of ¼�Ö���d×�DR�� is obtained compared to ��9 operation. The other observation was

that the use of two supply voltages can reduce power dissipation substantially, while three supply

voltages resulted in less than ��� reduction compared to two supply voltages.

Johnson and Roy [65] present an algorithm called Multiple Operating Voltage Energy Reduc-

tion(MOVER) to minimize datapath energy dissipation. Energy savings ranging from "Ñd?��"��
are obtained with the area penalty in the range ")d��q��"�� . The MOVER generates one, two, and

three supply voltage designs for consideration by the circuit designer. The user has control over

latency constraints, resource constraints, the number of control steps, clock period, and the number

of power supplies. The MOVER iteratively searches for the range of minimum voltage levels. The

42

www.manaraa.com

MOVER uses an ILP to evaluate the feasibility of candidate supply voltage selections, to partition

operations among different power supplies and to produce a minimum area schedule under latency

constraints once voltages have been selected. The MOVER has the following phases :

3 determining maximum and minimum bounds on the time frame in which each operation

must execute

3 searching for minimum voltage

3 partitioning datapath operations into two supply voltage that are either higher or lower supply

voltages.

3 partitioning the lower voltage group, for the three supply voltage schedule.

The MOVER algorithm [65] is similar to the MESVS algorithm [87] in the following ways :

3 both use ILP formulation

3 behavior with respect to latency, resource, ad supply voltage constraints

3 both use differential cascode voltage switch(DCVS).

The difference between the MOVER and MESVS two is that MESVS can only select a discrete set

of voltages, whereas MOVER can select a continuous range of voltages. The ILP formulation han-

dles timing and resource constraints and accounts for the cost if level shifters are used. However,

MOVER and MESVS have following drawbacks :

3 it does not address conditional branches

3 does not consider functional pipelining

3 energy model used is data-intensive which ignores the effect of input activities on the energy

dissipation of a module

3 it has exponential worst-case complexity and can not handle large benchmarks.

43

www.manaraa.com

Chang and Pedram [51, 88] present a dynamic programming technique for multiple supply volt-

age scheduling. The proposed technique handles both functionally pipelined and non-pipelined dat-

apaths and multicycling operations. The scheduling algorithm assigns a supply voltage level from

a fixed set of voltage levels such that the energy consumption is minimum for given constraints.

In this algorithm, the level-shifters are used for both step-up and step-down of signals. It may be

noted that in most of the algorithms, level-shifters are used for step-up of signals only. An average

saving of ¼�"#���7S�� is obtained using three supply voltage levels as compared with single supply

voltage level. The algorithm has pseudo-polynomial complexity and produces optimal results for

trees and produces suboptimal for general directed acyclic graphs. The scheduling algorithm can

handle very large data flow graphs and the results are within �q� error.

In [89], an ILP formulation and a heuristic for variable voltage scheduling is presented by Lin,

Hwang and Wu. The authors have considered three different solutions to the problem, such as time

constrained, resource constrained, and time-and-resource constrained. The scheduling schemes

consider variable supply voltage and multicycling. The heuristic method produces results compa-

rable with those of the ILP method in a fraction of run-time. The time complexity of the heuristic

algorithm is Ø � � �£Ù �¯Ú�� � . The proposed heuristic is an modification over list-based algorithm with

a priority function that considers three factor, such as the power gain of an operation, the mobility

of an operation, and the computation density. The authors show that using different cost and delay

combinations, power consumption in a single design can differ by as much as a factor of Ö when

using mixed . Z � Z 9 and �A�Ô"�9¶0 supply voltages.

Sarrafzadeh and Raje [90] proposed two scheduling algorithms; one is a dynamic program-

ming algorithm and other is an heuristic algorithm based on geometric algorithm. The algorithms

assume both time and resource constraints as inputs. The resource constraints is the number and

type of each functional units and their operating supply voltage. The algorithms assume only two

supply voltages, such as
Z � Z 9 and �A�Ô"�9 . The aim of the algorithms is to maximize the usage of

the functional units at the lower supply voltages while satisfying the time constraints. Let � be

the number of nodes, � be the time constraint,
�

is given resource constraint, � is latency of a

functional unit that run at a supply voltage of 9 ~ . The running time of the dynamic programming

44

www.manaraa.com

Table 2.1. Datapath Scheduling Schemes using Multiple Supply Voltages

Proposed Optimization Constraints Operating Voltage Time
Scheme Method Used Assumed Levels Complexity

Johnson and ILP Time ./�A�Ô"�9=�Û�A�Ô"�9¶0 Expoential
Roy [86, 87]
Johnson and ILP Time ./�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9Y0 Expoential
Roy [65]
Chang and Dynamic Time ./�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9Ñ0 Pseudo-
Pedram [51, 88] Programming Polynomial
Lin, Hwang ILP and Time and ./�A�Ô"�9�: Z � Z 9V0 Expoential
and Wu [89] Heuristic Resource Ø � � �¿Ù �¯Ú�� �
Sarrafzadeh Dynamic Prog Time and .��A�Ô"�9�: Z � Z 9V0 ØMÝ7� C �A�oÞ � Þ C4ß
and Raje [90] Geometric Resource Ø[.c��$ Ù �¯Ú���$10
Kumar and Stochastic Resource ./�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9Y0 Ø � � C �
Bayoumi [91, 92, 93] Evolution
Elgamel and Genetic Time and ./�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9Y0 NA
Bayoumi [94] Algorithms Area
Shiue and List-Based Time and ./�A�Ô"�9�: Z � Z 9V0 or Polynomial
Chakrabarti [95, 96] Resource ./�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9Y0
Manzak and Lagrangian Time and ./�A�Ô"�9�: Z � Z 9�: Ø � � C � and
Chakrabarti [97] Multiplier Resource �A�Ü¼�9�:7������9V0 Ø � � C Ù �¯Ú � �
Manzak and List-Based Time and ./�A�Ô"�9�: Z � Z 9�: Ø � � C � C �
Chakrabarti [98] Resource �A�Ü¼�9�:7������9V0

scheduling algorithm is Ø Ý � C �A�oÞ � Þ C¿ß . If $ is the number of control steps, then the time complex-

ity of the geometric algorithm is Øà.b��$ Ù �qÚ���$^0 and can handle more than two supply voltages. The

authors reported power reductions in the range of � Z ���DR
d Z ������¼�� for various high-level synthesis

benchmarks under various resource and time constraints.

Kumar and Bayoumi [91, 92, 93] proposed scheduling schemes using multiple supply voltages

and multicycling. The algorithms essentially has two phases, initial-scheduling and re-scheduling.

During initial scheduling parallelism is exploited and the re-scheduling uses an iterative approach,

which is based on stochastic evolution. Level-converters are used when a functional unit operating

at lower voltage drives a functional unit operating at higher voltage. The time-complexity of the

scheduling algorithm is Ø � � C � . The authors report power savings upto R�"�� for three supply

45

www.manaraa.com

voltage levels of .2�A�Ô"�9�: Z � Z 9 and �A�Ü¼�9¶0 . The power overhead due to the level-converters is in the

range "�d×¼�� and the area overhead is in the range "'d!Ö�� .

Elgamel and Bayoumi [94] use genetic algorithms to solve multiple supply voltage scheduling

problem with multicycling operations. The proposed scheme assumes unscheduled data or control

flow graph, datapath component library, area and time constraints as inputs and minimize average

power. The algorithms simultaneously solves scheduling, allocation and binding. Power reduc-

tion as high as R�¼�� is reported. The results do not consider the power overhead due to the level

converters.

Shiue and Chakrabarti [95, 96] discuss a resource constrained and a latency constrained list-

based scheduling algorithms using multiple supply voltages. The scheduling scheme consider the

effect of switching activity. The algorithms use heuristics to reduce power consumptions in the

level-converters. The list based algorithms assign control steps to nodes based on their priorities.

The priority of a node is a function of various parameters, such as depth, mobility, switched capac-

itance, interconnection complexity and need for a level shifter. The level shifters are used between

a low-voltage resource and a high-voltage resource for stepping-up the signal. The proposed al-

gorithms are of polynomial time-complexity. The proposed schemes achieve significant power

reduction when the operation voltages are ./�A�Ô"�9 and
Z � Z 9)0 or .2��9�: Z � Z 9�: and �A�Ü¼�9)0 .

The Lagrangian multiplier method has been used by Manzak and Chakrabarti [97] to develop

resource and time constrained scheduling algorithms. The algorithms which use Lagrangian mul-

tiplier method in an iterative fashion, are based on efficient distribution of slack among the nodes

in the DFG. If � denotes the number of nodes and
�

denotes the latency, the time complexity of

the two versions of the proposed algorithms are Ø � � C � and Ø � � C Ù �¯Ú � � . The Ø � � C Ù �¯Ú � � algo-

rithm results better savings in energy compared to the Ø � � C � algorithm. Average power or energy

reduction of
Z S�� has been obtained when the latency constraint is ����� times the critical delay and

is improved to �DRA����� when the latency constraints relxed to � times the critical path delay. The

time constraint, resource constraint consisting of the number of resource of each type operating at

specific voltage, delay and energy values are given as inputs to the algorithm. The resources are

46

www.manaraa.com

allowed to operate at one of supply voltages from .��A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9�: and ������9¶0 . The level shifters

are used whenever step-up of signal is necessary.

Manzak and Chakrabarti [98] proposed list-based latency and resource constrained scheduling

algorithms. The scheduling uses priority function based on the number of available resources, the

difference between the actual number of cycles left and estimated number of cycles required to

schedule remaining nodes. The algorithms consider the switching activity of nodes. The resources

are allowed to operate at one of supply voltages from .2�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9�: and ������9)0 . The average

power or energy reduction is �DSA���q� when the latency constraint is ����� times the critical delay and

the average power or energy reduction is ÖDÖA��R�� when the latency constraint is �A�Ô" times the critical

delay. The time-complexity of the algorithm is Ø � � C � C � , where � is the number of resources, and�
is the latency.

A comparative view of the above discussed algorithms which use voltage reduction for average

power or energy reduction is given in Table 2.1.

2.2 Switching Activity Reduction During High-Level Synthesis

In this section, we discuss the works on datapath scheduling which use capacitance reduction

to reduce average power or energy. An overview of the discussed methods is given in Table 2.2,

where the percentage power reduction is the average data.

Kumar, Katkoori, Rader and Vemuri [99, 100] present a profile driven approach to high-level

synthesis called as Profile Driven Synthesis System(PDSS). The inputs to the PDSS are a subset

of VHDL and constraints in terms of clock period and area. The PDSS generates a constraint-

satisfying design with the least amount of estimated switching activity. In this system, the input

specification is profiled to collect data for various operations and carriers using a user-specified

input set of vectors. The switching activity for each module set is estimated by using this profiled

data and the raw switching activity data of all modules in the library. The module set with minimum

estimate of power consumption is chosen for further synthesized. The goal of profiling is to gather

the following data :

47

www.manaraa.com

3 For each node (operation), the number of times the node is executed for a given profiling

stimuli is determined and input vectors used as profile stimuli. This number is called the

event activity of the operation node.

3 For each edge, the number of times the edge is traversed during execution is determined.

This number is called the transaction activity of the edge.

3 For each edge, the number of times the value on the edge has changed is determined. This

number is called the event activity of the edge.

The authors claim that the results obtained are within an accuracy of �4"�� of the actual switching

activity measured at the switch level implementation of the design.

Raghunathan and Jha [101] present a comprehensive low-power datapath synthesis system that

performs the various high-level synthesis tasks with the aim of reducing power consumption in

the synthesized datapath. The authors call the system as SCALP. The system considers both sup-

ply voltage and switching capacitance to reduce the power consumption. The authors claim that

SCALP estimates switching capacitance accurately, handles diverse module libraries and utilizes

complex scheduling constructs such as multicycling, chaining, and structural pipelining. The input

to the SCALP is a control data flow graph (CDFG), input sampling period, and a library of compo-

nents to be used for datapath implementation. The SCALP minimizes power consumption both by

voltage scaling and switching capacitance reduction. This is done by first pruning the set of candi-

date supply voltages to a small set of supply voltages. For each supply voltage in the pruned set, a

datapath is synthesized that has minimal capacitance. The best solution among these datapaths in

terms of power consumption is then chosen.

Raghunathan and Jha [102] are the first researchers to purpose the allocation method for low

power. The method is based on iterative improvement of some initial solution. The authors as-

sume random input in a structurally pipelined design. The method can also handle non-random

input sequences. The method is implemented in the framework of Genesis behavioral synthesis

system[103]. In this system, register and module allocations are performed simultaneously, while

minimizing the amount of interconnect needed. A lifetime analysis is performed for the scheduled

48

www.manaraa.com

CDFG. Two variables are said to be compatible and can share hardware resources if they are not

alive at the same time. Similarly, two operations are compatible if they are not performed at the

same time. Allocation is based on a weighted graph called compatibility graph (CG). Initially,

each variable and operation corresponds to a node in the CG, with undirected edges connecting

compatible pairs. Weights are assigned to edges in the CG to indicate the preference on the two

variables or operations for sharing the same resource. A single step of allocation selects the edge

in the CG with the highest composite weight, and merges the two nodes it joins, maps the cor-

responding variable (or operation) to the same module (register). If two or more edges have the

same composite weight, the tie is broken based on the corresponding transition activity weights

(or some cases arbitrarily). Power reduction is achieved by the help of two factors, capacitance

and transition activity. Capacitance is reduced by minimizing the number of functional modules,

registers and multiplexers. The allocation scheme selects a sequence of operations (variables) for

a module or register such that the transition activity is reduced.

Chiou, Muhammand and Roy [104] propose scheduling and allocation method that reduce

power consumption of data intensive applications by minimizing switching activity. The main idea

of the synthesis technique is to reduce the signal strength difference among the inputs of shared

resources. The signal strength is derived from word-level statistics. The authors have proposed a

formula that relates switching power with resource sharing as follows.

Switching increment Difference in switching activity with and without sharing
Switching activity without sharing

(2.1)

It is observed that sharing resources between two operations with high signal similarity will lower

switching activity and hence reduce switching power. This observation serves as the major princi-

ple behind the proposed scheduling and allocation techniques. The proposed scheduling algorithm

is heuristic based and uses greedy approach in making module selections. Average power reduction

upto ¼�S�� is obtained using the proposed techniques compared to the conventional ones.

A comprehensive high-level synthesis system is proposed by Khouri, Lakshminarayana and

Jha [105] to synthesize both control-flow intensive and data-intensive circuits. The system handles

49

www.manaraa.com

conventional synthesis tasks, such as scheduling, module selection, and resource sharing. More-

over, power-conscious structuring of multiplexer networks, which are predominant in control-flow

intensive circuits, is the key additional feature in the system. Experimental results demonstrate

power reduction of ÖD��� for control-flow intensive benchmarks as compared to 9�f<f -scaled area-

optimized designs. The power reduction for the data-dominated benchmarks is �DR�� as compared

to 9�f<f -scaled (delay-optimized) designs. The power reductions come with an area penalty of ap-

proximately ¼�"�� .

Henning and Chakrabarti [106, 107] propose an intutive switching activity model to capture

data characteristics in terms of statistical parameters. Then, heuristics are proposed for scheduling

and allocation exploration. The novelity of the model is a relation between switching activity

of datapath interconnect to the fixed-point, two’s complement data. The model is based on four

practical parameters, which are basically the bits of the two values involved in the transition, such

as sign bits, the number of intersecting sign bits, number of truncation bits in the two values and

all other bits of a value that are not sign or truncation bits. Since, the model is dependent on only

four parameters the scheduling and allocation is efficient. The heurstic is applied to synthesize a

speech codec design. It is reported that average power reduction is about �7��� during encoding.

An ILP-based resource binding scheme is proposed Shiue and Chakrabarti [108] that minimizes

the amount of switching at the inputs of functional units. The idea of resource binding is to find� disjoint paths from a multistage graph with á stages, where á is the number of cycles in the

schedule and � is the number of nodes per stage. The first step of binding is to find a multistage

graph called the binding graph. The total number of nodes of such graph is �NGQá , and two

nodes for source and sink. If two nodes are located in two different stages can share a resouce,

then the two are connected with a edge. Each edge is labeled with a cost corresponding to the

switching activity. The LP objective is to find � disjoint paths such that the total cost of these paths

is minimum. Power savings in the range of RA���^d Z ¼��Ü¼�� are obtained using the proposed binding

scheme for various resource constraints as compared to random binding scheme.

Musoll and Cortadella [38] present algorithms for scheduling and resource-binding to reduce

power consumption during behavioral synthesis. The algorithms reduce power consumptions by

50

www.manaraa.com

Table 2.2. High-Level Synthesis Schemes using Switching Activity Reduction

Proposed Synthesis Tasks Methods Time % Power
Work Performed Used Complexity Reduction

Kumar, Katkoori, Rader Scheduling, Register Simulation NA NA
and Vemuri [99, 100] Optimization, etc. of DFG
Raghunathan Tranformation, Sche- Iterative Polynomial 4.6
and Jha [101] duling and Allocation Improvement
Raghunathan Allocation Simulation NA 14.6
and Jha [102]
Chiou, Muhammand Scheduling and Heuristic Polynomial 30.13
and Roy [104] Allocation Based
Khouri, Lakshmi- Scheduling and Heuristic Polynomial 22
narayana and Jha [105] Resource Sharing
Henning and Chakrabarti Scheduling and Intutive Polynomial 15
[106, 107] Allocation Heuristic
Shiue and Chakrabarti Resource Integer Linear Exponential 24.08
[108] Binding Programming
Musoll and Cortadella Scheduling and List-Based Ø � � C á � 6.67
[38] Resource Binding Algorithm
Lundberg, Muhammad, NA Hierarchical NA 14.93
Roy and Wilson [109, 110]
Shin and Lin Resource Heuristic Polynomial 7.84
[111] Allocation
Monteiro, Devadas, Scheduling HYPER [112] NA 22.43
Ashar and Mauskar [113]
Cherabuddi, Bayoumi Partitioning and Stochastic Polynomial 23.89
[114] Binding Evolution
Lee, Lee, Park Scheduling Heuristic Polynomial 16.5
and Hwang [115]
Gupta and Scheduling Force-Directed Ø � ��â¿� � 16.4
Katkoori [116] Heuristic
Murugavel and Scheduling Game Theory Exponential 13.9
Ranganathan [117] Binding

51

www.manaraa.com

reducing the transitions of their input operands. The power consumption of a functional unit is

divided into useful and useless power. Useful power is consumed when an operation is executed

and useless power is the consumption due to an input transition while the functional unit is idle.

The algorithms proposed reduces both useful and useless power consumption. The scheduling

algorithm is list-based in which the operation priority is set in such a way that operations sharing

the same operand are scheduled in control steps as close as possible. For � number of operations

and á number of functional units, the running time of the proposed low power list scheduling

(LPLS) is Ø � � C á � . The algorithm for resource-binding is based on clique partition that reduces

power consumption by taking the average Hamming distance (��ãHÄ) among the variables. For

two operands ä and å , if ãæ.�ä�:<å�0 is the Hamming distance and Ï�m is the value of operand Ï in cycle

¥ , the average Hamming distance is defined as follows.

�PãsÄs.bÏ�0ç è�é�ê)F�ë'ìMÝ�í)îï�ð�ñ�ò�ó � ï ® � ï » ñ�ôF ß (2.2)

The average Hamming distance is used as a measure of energy in ��Å /operation. Power reductions

in the range of ��d�R�� have been reported.

Lundberg, Muhammad, Roy and Wilson [109, 110] proposed switching activity models and

use them to synthesize low power digital signal processing systems. The models can be easily

integrated in any CAD tool. The accuracy of estimates obtained using the proposed models is

reported to be within ¼�� . Switching activity reductions upto ��"�� is obtained using the proposed

approach. The models consider switching occuring at the output of functional units, but do not

consider the capacitance difference due to the interconnect lengths. The bits of a signal are divided

into three regions, such as low switching region, high switching region and the region in between.

The low switching region consists of the most significant bits (MSBs), the high switching region

is the least significant bits (LSBs) and the inbetween region is considered to be a linear transition

connecting the other two regions. Using these models, the output switching of basic building

blocks, such as one-bit delay, half-adder, full-adder have estimated. It is assumed that the number

52

www.manaraa.com

of internal transitions of a half-adder and a full adder is twice and thrice, respectively more than

that of an one-bit delay.

Shin and Lin [111] propose an efficient resource allocation algorithm that minimizes switching

activity to reduce the dynamic power consumption of the DSP datapath. Let I be a certain binary

input sequence. Suppose,
�

is the length of I and
À

is the number of ”1”s in the input sequenceI . The average switching activity of I is calculated as follows.

� w/õum | � y4m«F�ö � �¯÷n � � n ´ ÷n � (2.3)

For example, for a input sequence "��D�4"��D�4"D"D"D" , � ø�4" and
À ù¼ . The input to the allocation

algorithm is a scheduled data flow graph. The algorithm executes all control steps, and compare

functional unit with low power consuming register and interconnects of DSP circuits. The algo-

rithm is of polynomial time complexity. Power reduction upto RA����� reported using the algorithm.

Shut-down techniques are used by Monteiro, Devadas, Ashar and Mauskar [113] to eliminate

switching activity and hence power dissipation. The conditions under which the output of a module

is not used for a particular cycle is identified and the input latches for that module is disabled when

the conditions are met. The proposed scheduling algorithm maximizes the shut-down period of

functional units. The scheduling algorithm is time and resource constrained. The techniques, such

as multiplexor reordering, pipelining are proposed to improve power management under these

stringent contraints. The power reduction as high as ¼6����Ö��D� has been reported.

Cherabuddi and Bayoumi [114] propose partitioning and binding algorithms that minimize the

switching activity of functional units and global buses for single-chip applications. Cherabuddi,

Bayoumi and Krishnamurthy [118] extend the same work for multi-chip applications. The authors

have used a stochastic evolution based technique for partitioning. Power reduction up to Ö�"�� has

been reported. The switching activity is computed by iteratively changing the input data pattern

and a switching activity matrix is constructed. The partition algorithms partition the data flow

graph such that each one of them can be implemented in different chips of multi-chip modules

(MCMs). The stochastic evolution approach is used in the partition algorithm for faster conver-

53

www.manaraa.com

gence. Scheduling and binding steps are performed for each move on the partitioning. An in-

compatible graph is constructed from the original graph for resource allocation purpose. To find

optimal solutions for low-power binding, a multistage graph is formulated and dynamic program-

ming approach is used. The total switching activity of a schedule is calculated as the summation of

switching activity of the chips on the module and the switching activities on the interchip buses.

Lee, Lee, Park and Hwang [115] propose a scheduling algorithm that reduces the switching

activity of the functional units under area or time constraints and thus reducing the power con-

sumption. The switching activity is minimized by scheduling operations such that the Hamming

distance between the variables appearing in the input and output port is minimum. The functional

unit allocation is performed by partitioning the operations in the given behavioral description and

the switching activity is kept at minimum. After allocation is performed, the scheduling algorithm

attempts to schedule the operations using the minimum number of functional modules. The algo-

rithm is of polynomial time complexity. The results indicate that switching reduction of �7ÖA����� in

average can be obtained.

Gupta and Katkoori [116] propose a scheduling algorithm based on the original force-directed

scheduling algorithm proposed in [24]. For a given data flow graph and input data environment the

DFG is profiled with the representative data streams. The probability of selecting a combinations

among the operations which would share a resource is evluated. Assuming that the force equation

is &ú N�AÏ , the switching capacitance inside a module is modeled as spring constant � and the prob-

ability of selecting such an combination is modeled as displacement Ï . For � number of possible

time steps and � number of operations, the time complexity of the proposed algorithm is Ø � � â � � .
It may be noted that the original force-directed scheduling algorithm has running time of Ø � � C � .
The authors have reported a power reduction of �7ÖA�Ü¼�� over the conventional force-directed algo-

rithm.

Murugavel and Ranganathan [117] describe a game theory based algorithm for average power

minimization during behavioral synthesis using low power binding. The techniques of functional

unit sharing, path balancing, and register assignment are incorporated within the binding algorithm

for power reduction. For the binding algorithm, each functional unit in the datapath is modeled as

54

www.manaraa.com

Table 2.3. Relative Performance of Various Schemes Proposed for Peak Power Minimization

Proposed Synthesis Tasks Methods Time % Power
Work Performed Used Complexity Reduction

Martin and Knight Scheduling Genetic NA 40.3-60.0
[41, 44] Assignment Algorithms
Shiue and et. al. Scheduling ILP Exponential ��"#�Ô"^d!���A�Ô"
[119, 120, 121, 108] Force Directed Ø � ¤£� � �
Raghunathan, Scheduling Data Monitor NA 17.42-32.46
and et. al. [47] Operations

a player bidding for executing an operation with the estimated power consumption as the bid. The

operations are assigned to the functional units such that the number of inputs to the functional units

that change is minimized thus reducing switching activity. The proposed algorithm yields power

reduction improvement of � Z ��S�� without any increase in area or delay overhead.

2.3 Datapath Scheduling for Peak Power Reduction

Few research works have appeared addressing peak power minimization at behavioral level. In

this section, we briefly discuss those works and give a overview of their relative performance in

Table 2.3.

Martin and Knight [44, 41] have proposed a scheme which combines the SPICE simulations

with a behavioral synthesis tool to estimate and optimize digital ASIC’s peak power consumption.

SPICE is used to measure the power consumption accurately. The behavioral synthesis tool is

used for simultaneous assignment and scheduling such that the use of power in each clock cycle

is minimum. Genetic algorithms are used in the behavioral synthesis tool for optimization. The

author claim that genetic algorithms have advantages over the other conventional optimization tools

since they never get stuck in local minima and do not need fine tuning. The proposed synthesis tool

can minimize the following parameters.

3 average power with area, delay, and peak power constraints

3 peak power with area, delay, and average power constraints

55

www.manaraa.com

3 delay with area and peak- or average power constraints

3 area with delay, average- and/or peak-power constraints

3 any combination of area and power as weighted formula

The optimizer searches for the best combination of architecture and schedule while satisfying all

given constraints. They reported peak power reduction in the range of ¼�"^dæÖ�"�� , which comes at

the cost of "#� Z dà�A���D� penalty in average power. The work also considers mixed supply voltage

scenario . Z � Z 9�:h�A�Ô"�9V0 . It is reported that the time penalty is large if the circuit is operated at low

voltage, but significant power reduction is achieved.

Shiue [119, 120], Shiue and Chakrabarti [108], and Shiue, Denison and Horak [121] propose

different datapath scheduling schemes to minimize peak power at behavioral level. In [108, 121,

120] integer linear programming formulations are proposed, whereas [119] also includes a mod-

ified force directed scheduling algorithm. The running time of the proposed modified force di-

rected scheduling algorithm is Ø � ¤£� � � , if ¤ is the number of control steps and � is the number

of nodes. The scheduling schemes in [119] minimize peak power while satisfying time constraint.

The scheduling algorithms in [108, 121, 120] minimize both peak power and peak area while sat-

isfying latency constraints. The simultaneous minimization is performed by the help of multicost

objective using the user defined weighting factors. The formulation consider multicycling and

pipelining and single supply voltage design. Peak power reductions in the range of ��"Pdû����� have

been reported after scheduling and pipelining. The reduction in peak area is also in the range of��"'d!����� .

In [47] a high level synthesis approach is presented by Raghunathan, Ravi, Raghunathan, and

Lakshminarayana for transient power management. The power optimization includes the peak

power and peak power differential. The authors advocate the need for judicious choice of transient

power metric to avoid area and performance overheads. The authors propose the use of data monitor

operations for simultaneous reduction of peak power and peak power differential. The proposed

scheduling algorithm takes constraints on power characteristics in addition to conventional resource

56

www.manaraa.com

and time constraints. In this scheme, peak power reduction in the range of �q�Vd Z ��� has been

obtained. The reduction in the peak power differential is in the range of �D��d��DR�� .

2.4 Scheduling for Variable Voltage Processor

The variable voltage processor has special instructions for controlling power. The supply volt-

age and clock frequency can be changed at any time by the instructions in the application programs

or operating systems. Examples of such processors are Transmeta crusoe, Itsy, Intel StrongARM,

etc. The clock frequency is adjusted according to the supply voltage to guarantee correct operation

(figure 2.1). The four approaches to manage variable voltage processor are as follows [122] : (1)

hardware based (no information), (2) interval-based (load information only), (3) integrated sched-

ulers (all operating system statistics), and (4) application-specific (complete knowledge). In this

section, we discuss the scheduling algorithms proposed for variable voltage core-based systems

under the assumption that the operating system has a voltage scheduler (as in case 3). We also dis-

cuss instruction scheduling for variable voltage processor which assigns voltage and frequency at

complier level. The variable scheduling scheme may be either static (off-line) or dynamic (online),

but the instruction scheduling schemes are off-line. The variable voltage or instruction scheduling

schemes be either preemptive or nonpreemptive. It may be noted that variable voltage processors

also referred as variable frequency processors. An overall view of the scheduling algorithms is

given in Table 2.4.

Ishihara and Yasuura [123] propose a static voltage scheduling algorithm using integer linear

programming formulations. The processor core can have single supply voltage at each instant of

time, which can be changed dynamically. The average switching capacitance
À $'ü per cycle of�}ýAÁ��Dü is calculated as follows.

À $�üþ í)ÿ�� �ï�ð#ñ í �� ð#ñ � n � ÷ � ï � �° � � (2.4)

where, ;)$�ü is the number of execution cycles for �xý#Á���ü , * is the number of gates in the processor,$ � is the load capacitance of a gate Ú , and
À�� mÔüº is the switching count of Ú while the ¥ | y cycle

57

www.manaraa.com

Figure 2.1. Variable Voltage Processor Operation : Voltage Vs Frequency [122]

of �xý#Á�� ü is executed. On the basis of the assumption that the processor can use only a small number

of discretely variable voltages, the authors have proposed many theorems, some of them are given

below.

3 For a processor that can use consecutive voltage, only a single voltage can minimize energy

consumption satisfying the time constraints.

3 The voltage scheduling with at most two voltages minimizes energy consumption usnder any

time constraints if a processor can use only a small number of discrete voltages.

The authors have reported energy reduction upto ��"�� . Various processors with minimum oper-

ating voltage "#��S�9 and maximum operating voltage
Z � Z 9 are used in the experiments. Okuma,

Ishihara, and Yasuura [124, 125] propose both static and dynamic voltage scheduling in the above

framework.

Hong, Potkonjak, and Srivastava [126] propose preemptive variable voltage scheduling for real-

time tasks comprising of both on-line and off-line workloads. The scheduling scheme ensures that

the deadlines are met. The variable voltage is generated using DC-DC switching regulator. The

authors pointout that the time overhead for clock frequency stabilization is negligible. A periodic

58

www.manaraa.com

(off-line) task is characterized as ��m�.�$�mz:<Ä)m}:<%�m20 , where $om is the worst-case computation time at

the highest voltage, ÄVm is the hard deadline, and %im is the period. Similarly, a sporadic (on-line)

task is characterized as
À m#.c�Pm}:º$�mz:<Ä)m�0 , where �Pm is the arrival time, $tm is the computation time at

highest voltage, Ä¶m is the hard deadline. The on-line scheduling algorithms is heuristic based and

has Øà.báH0 time-complexity for á number of tasks. Two algorithms are proposed that can handle

both on-line and off-line tasks. The running time of the optimal algorithm is ØÑ. p O¬áH0 , where

p is the total number of requests in each hyperperiod of the � periodic tasks and á is the number

of on-line tasks that have been accepted, but uncompleted. The suboptimal heuristic algorithm

has time-complexity ØV.báH0 . The heuristic-based schedulers use a priority task queue in which

the tasks are ordered on the Earliest-Deadline-First (EDF). Power reduction upto ��"�� reported by

the authors. In [127], Hong, Kirovski, Qu, Potkonjak, and Srivastava propose a nonpreemptive

scheduling heuristic of the same problem.

Mansour, Mansour, Hajj, and Shanbhag [128] propose time constrained and resource con-

strained instruction scheduling algorithms considering latencies of instructions for a variable volt-

age processor. The RISC architecture assumed has an integer unit and a floating point unit. The

integer unit has a pipelined integer adder, multiplier, and divider. Similarly, the floating point unit

has a pipelined floating point adder, multiplier, and divider. The operating voltages assumed are�A�Ô"�9�: Z � Z 9�:h�A�Ô"�9�: and �A�Ô"�9 . The architecture also assumed to have load and store instruction for

accessing memory. The proposed algorithm is list-based heuristic. The algorithm uses a power

gain metric at each node ��m defined as,

,
mÐ 	�
 ï� ï� ² §��
 ï .���� ï�� �q0 ´
 ï ó ��� ��� ô� ï� ² §�� (2.5)

where, % m ./9-0 is the power consumed by � m when scheduled at voltage 9 and Ä mb® l�k<� is the max-

imum delay occured by rescheduling ��m . The node with highest ,�m is selected for rescheduling.

The algorithm maintains a prologue of instructions preceeding ��m and an epilogue of instructions

following �gm in a data flow graph constructed for an instruction set. The time-complexity of the

algorithm is Ø � � â � . Power savings up to �DÖ�� has been reported using this technique.

59

www.manaraa.com

Table 2.4. Scheduling Algorithms for Variable Voltage Processor

Proposed Working Static or Method Running % Power
Work Level Dynamic Used Time Savings

Ishihara and OS Static ILP Exponential 70
Yasuura [123]
Okuma, Ishihara, OS Static ILP Exponential 56
and Yasuura [124, 125] Dynamic Heuristic NA 58
Hong, Potkonjak, OS Dynamic Heuristic ØV. p OæáH0 20
and Srivastava [126]
Hong, Kirovski, System Static Heuristic ØV.b� � 0 25
and et. al. [127]
Mansour, Mansour, Circuit and Static List-based Ø � � â � 56
and et. al. [128] Behavioral Heuristic
Azevedo, Issenin, Compiler Static Heuristic NA 82
and Cornea [129, 130]
Swaminathan and OS Dynamic ILP Exponential 15
Chakrabarty [131] Dynamic Heuristic NA NA
Swaminathan and OS Dynamic Prunning Polynomial NA
Chakrabarty [132]
Hsu, Kremer, Compiler Static Heuristic NA 70
and Hsiao [133, 134]
Pering, Burd OS Static Heuristic ØV.b��0 80
and Brodersen [58]

Lee and [135] OS Static Heuristic Ø8Ý7� C Ý ¡ ² §��¡ ²uï î ß�ß 54.5

Krishna [135] Dynamic Heuristic NA 65.6
Pouwelse, Langen- OS Dynamic Heuristic Ø � � � � 50
doen, and Sips [52]
Yao, Demers, OS and Static Heuristic Ø � � Ù �¯Ú C � � NA
and Shenker [136] Circuit Dynamic NA NA NA
Luo and Jha OS Heuristic NA 50
[137]
Luo and Jha [138] OS Static Polynomial NA

Dynamic

60

www.manaraa.com

In [129, 130], Azevedo, Issenin and Cornea propose a dynamic voltage scaling technique that

works at the compiler level instead of the operating system level. Checkpoints are introduced at

compilation time which indicate places in the code where the processor speed and voltage should

be recalculated. Two heuristic based algorithms are proposed. One heuristic results energy re-

duction of RD��� compared to the program execution without DVS. The proposed heuristic algo-

rithms are power and time constrained and is divided into two major phases, such as ahead of

time profiling phase and run-time power scheduling phase. The four different clock frequency and

voltage combinations supported are Ö�"D"�*+ã��^d×�A����9 , ��"D"�*úã �1d ����R�9 , ¼�"D"�*+ã��^d ������9 , andZ "D"�*úã �-dà�����q9 .

On-line scheduling algorithms for periodic tasks are proposed in [131] by Swaminathan and

Chakrabarty. The authors describe an intger linear programming (ILP) and a heuristic algorithm.

The heuristic algorithm is based on Earliest-Deadline-First (EDF) approach. The CPU assumed

has two speeds and the real time tasks are nonpreemptive. For example, for two supply voltages����ÖD��9 and
Z � Z 9 the operating frequencies are �4"D"�*úã�� and ��"D"�*+ã�� respectively. The supply

voltage to the CPU is controlled by operating system and the operating system may dynamically

switch the voltage during run-time. The ILP based approach results a power reduction of approx-

imately �4" dú�7��� as compared to the EDF method. In [132], the same authors have proposed

a polynomial time-complexity prunning based algorithms called energy-optimal device scheduler

(EDS) in the same framework. The prunning is performed based on time and energy. Temporal

prunning is done when a partial schedules results in missing deadlines.

Hsu, Kremer, and Hsiao [133, 134] propose a compilation process that faciliates dynamic fre-

quency and voltage scaling for energy reduction with marginal execution time overhead. It is a

known fact that the modern architectures exploit temporal and spatial locality. For the programs

(computations) with less temporal / spatial locality, the processors often stall, waiting for the mem-

ory to provide data. This leads to the principle behind this work, which slows down the CPU that

would stall or idle using new compiler strategy. The total program execution time � is divided into

61

www.manaraa.com

three portions as given below.

� CPUBusy O MemoryBusy O BothBusy (2.6)

If the CPU speed is reduced by a factor Î , then new execution time becomes,

� new Î�	 CPUBusy Oæáµý�Ï ¥ á"!�áM. MemoryBusy O BothBusy :hÎP	 BothBusy 0 (2.7)

In order to have the new execution time very close to the original one so that the time penalty

is minimal, the follwing four condition must be satisfied : (i) ./Î�dà�q0�	 CPUBusy Í �q� , (ii)�QÍÒÎ[ÍÛ��O MemoryBusy
BothBusy , (iii) memory latency is divisible by Î , and (iv) Î has an integral

value. The following compilation strategy has been proposed by the authors : (1) Program re-

gions are identified as scheduling candidates, (2) Expected performance is modeled that involves

computation of CPUBusy, MemoryBusy, BothBusy, and Î , and (3) Voltage / frequency schedul-

ing instructions are generated for each scheduling candidate. The authors have reported energy

reduction of
ZDZ �=d!��"�� under the assumption of transmeta Crusoe processor.

Pering, Burd, and Brodersen [58] introduce a voltage scheduler as a part of operating system.

The scheduler determines appropriate operating voltage by analyzing application constraints and

requirements. The simulated lpARM processor is based on ARM8 core and designed to operate

between �����q9 and
Z � Z 9 , with operating frequency between �4"�*+ã�� and �4"D"�*úã�� . An Earliest-

Deadline-First (EDF) policy is used for temporal scheduling, which is optimal for fixed-speed

systems. The voltage scheduler needs support for four types of hardwares, such as speed-control

register, processor cycle counter, wall-clock time and system sleep control. The proposed schedul-

ing algorithm assumes that all tasks are sporadic and calculate the minimum speed necessary to

complete all tasks assumming that they are all currently runable. This speed is calculated as,

speed áµý�Ï ¥ á"!vá # í ��$ ï work�
deadline ï ´ current time %'& ó m)(6F ô (2.8)

62

www.manaraa.com

when the threads are sorted in EDF order. The algorithm has running time of ØV.b��0 . Energy

reduction up to R�"�� has been reported.

Both static and dynamic variable voltages scheduling algorithms are proposed by Lee and Kr-

ishna [135]. The processor is assumed to run either at high or low voltage and correspondingly

at high and low frequency. The first algorithm assigns each task to either high-voltage-fast-clock

(H-mode) or low-voltage-slow-clock (L-mode) operation modes while meeting all deadline re-

quirements. On the other hand, the dynamic scheduler switches operational modes based on the

accumulated processing workload. In case a task completes before its deadline then the dynamic

algorithm reclaims the unused processing time and use less of the high-voltage-fast-clock mode.

When the processor switches between the two modes, there is a switching interval for the voltage

regulator and the PLL clock generator to complete the mode change and the processor does not

function during that time interval. Let us assume that there are � tasks, task @ , task C , task F ,

which are numbered in decreasing priority order. Let $�m be the worst-case execution time of task m
when the processor is running in L-mode, ÄÑm be the deadline before which task m must be com-

pleted, and ��m be the minimum time interval between two consecutive instances of task m . It may

be noted that $om�Í�Ä)m�Íú�um . If � is the relative processing speed of H-mode with respect to the

L-mode (�+*W�), then the scheduling problem is to partition the task into two disjoint subsets such

that @ � m), ò � ï¡ ï O � m-,�n � ï¡ ï Í±� � � @/.xF dà� � and � m), ò � ï¡ ï is minimized. The time-complexity

of the scheduler is Ø Ý � C Ý ¡ ² §��¡ ²uï î ß�ß , where ��lok<� is the maximum and ��l�m«F is the minimum of ��m
respectively. For static scheduling, average power savings in the range of ¼ Z ���'d¬��¼������ and for

dynamic scheduling, average power reduction in the range of ����d×ÖD�A��Ö�� are obtained.

Pouwelse, Langendoen, and Sips [52] propose a heuristic called energy priority scheduling

(EPS) that arranges the tasks as per the deadline (ascending order priority). In this scheme, the

low-priority tasks are scheduled first since they can be preempted to make room for the high-

priority tasks. The energy priority scheduler is on-line heuristic that follows an incremental ap-

proach and dynamically adjusts the clock schedule when new tasks arrive and old tasks complete

or are preempted. The worst-case running time of the proposed heuristic is Ø � � � � . The algorithm

is implemented as a part of complete system consisting of hardware, OS, clock scheduler and ap-

63

www.manaraa.com

plications. The hardware is designed using a StrongARM SA1100 processor that supports clock

speeds in the range �DS�d��D�#�7*úã � . Energy reduction up to ��"�� has been reported.

In [136], Yao, Demers and Shenker invstigate various methods for reducing energy consump-

tion, both at circuit and at operating system level. The authors also propose an off-line scheduling

algorithms that executes the job between its arrival and deadline such that for a set of jobs, the

energy consumption is minimum. An on-line algorithm has also been proposed. Assuming that Å
is the set of jobs, for any job 021¸Å , if ý�ü is the arrival time, 3<ü is the deadline and

� ü is the number

of CPU cycles required, then a feasible schedule for Å must satisfy the following.

4 ¢ �k � Á�.b�<0}ÎÇ.�0��53�.b�B0º:�0A076�� � ü (2.9)

Where, ÁA.b�B0 is the processor speed at time � , 0��53�.b�<0 is the job executed at time � and ÎA.bÏ�:�860 is 1

if Ï� 98 or else 0. The proposed average rate (AVR) heuristic sets the processor speed at Á�.b�<0� � ü 6¯ü�.b�<0 and use the earliest-deadline policy to choose among the available jobs, where 6Aüæ : �¢ � ´ k � is the average rate requirement or the density. The running time of the optimal algorithm isØ � � Ù �qÚ C � � .
Luo and Jha [137] propose a power-profile scheduling algorithm for real-time heterogeneous

distributed embedded system scheduling algorithm. The algorithm satisfies the precedence rela-

tionship, the hard real-time constraints and while minimizing the power consumption by variable

voltage scheduling. The scheduler performs variable voltage scaling by addressing variations in

power consumption of different tasks and characteristics of different voltage-scalable processing

elements (PEs). If � is the number f tasks, � is the number of inter-PE communication edges

and * is the number of iterative steps, then the time-complexity of the proposed algorithm isØà.B.b�YOà�60 Ù �¯Úu.b�eO �60�ON.b�YO �60}*=0 . Power reduction upto ��"�� has been reported by the authors.

The same authors have proposed both static and dynamic variable voltage scheduling algorithms

for real-time heterogeneous distributed embedded systems in [138]. The time-complexity of the

proposed algorithm is polynomial. Power reduction upto
Z �D� has been reported. Similar work is

also address in [139] by Luo, Peh and Jha.

64

www.manaraa.com

2.5 Design and Synthesis for Low-Power or High-Performance Variable Voltage / Frequency

/ Latency and Multiple Voltage Based Systems

In this section, we discuss the research works proposed in the current literature that deal with

multiple supply voltages, variable voltages (frequency) or dyanamic clocking frequency based sys-

tems designed for low power or high performance applications. An overview of the proposed works

is given in Table 2.5. In the table, for low-power works percentage reduction in power is given and

for the high-performance works percentage improvement in performance is tabulated.

Usami, Igarashi and et. al. [66, 68, 69] propose multiple supply voltage based techniques

for low power media processor design. The method involves a combination of clustered voltage

scaling and row-by-row optimization of power supply. The number of level converters used in

the design is minimized because of the clustered voltage scaling. At the same time, the clustered

voltage scaling technique maximizes the number of low 9gf<f operating gates, while maintaining the

time constraint. A new power bus wiring scheme called ”RRPS” (row-by-row optimized power

supply) is proposed that provides different supply voltages to each cell row. A in-house layout tool

called ChipMaster is developed that places the multiple supply voltage circuits using RRPS scheme

and creates the corresponding clocking scheme. The ChipMaster back annotates the estimated

interconnect capacitance based on the placement result to the PowerSlimmer (the multiple supply

voltage scaling tool). Using the back annotates information, the PowerSlimmer reoptimizes the

multiple-supply-voltage netlist. The ChipMaster takes the reoptimized netlist and performs the

layout again. The two types of cell libraries used are VDDH and VDDL. VDDH is the conventional

high operating voltage cell library and the VDDL is the low operating voltage cell library. The

ChipMaster places the VDDH and the VDDL cells close together on the critical path and controls

the wire length so that the interconnect delay is minimized. The post-placement netlist optimizer

(PNO) performs the gate resizing or replaces cell model which had different gate width and has

the same function such that the critical path delay is minimum. The clock tree is designed based

on the RRPS scheme. The supply voltage level of all flip-flops are reduced to low-voltage level

and also the introduced buffer cells operate at lower voltage. The level converters are placed in the

VDDH row to supply the VDDH. The proposed method is used to design a media processor with

65

www.manaraa.com

Z � Z 9 and ����S�9 supply voltage and ���D*+ã�� main clock frequency. The power reduction obtained is¼��D� with an area overhead of �7��� . Automated low-power techniques have been proposed in [68,

69] for the same design methodology. The power reduction in the clock tree is � Z � as reported in

[68]. A design technique combining a variable supply voltage scheme and above clustered voltage

scaling is proposed in [67]. Power reduction of �D��� is obtained when the design methodology is

applied to a video codec design.

Ranganathan, Vijaykrishnan, and Bhavanishankar [59, 60, 140, 141] introduce the concept of

dynamic frequency clocking (DFC) and use it in designing high-performance image processing

architectures. They propose a SIMD (single instruction multiple data) architecture for real-time

image processing applications using dynamic frequency clocking. The VLSI chip developed using

the proposed architecture was implemented using Cadence tool. The chip operates in the frequency

range of ��"�d�¼�"D"�*úã�� . The DFC scheme is more suitable for data flow intensive application (such

as DSP and image processing). The DFC scheme is a combination of three concepts : reconfig-

urable architecture, frequency synthesizer and clock dividing strategy. In the reconfigurable archi-

tecture, frequencies are switched as the circuit changes while in DFC scheme, frequency switching

occurs based on the units being used. In the clock divider strategy, each unit receives a separate

clock operating at a different frequency, whereas in DFC strategy, the same clock switches dynam-

ically. Different functional units can have different maximum operating frequencies, for example,

maximum frequency of multiplier has ��"�*úã � , RAM has �4"D"�*úã � , logical unit has ��"D"�*úã � ,
adder has ¼�"D"�*úã�� , etc. A dynamic clocking unit (DCU) interprets and decodes each instruction

and drives the processing unit at a suitable frequency. For a master clock at ¼�"D"�*+ã�� , the output

frequency, such as ��"D"�*úã�� , �4"D"�*úã � , and ��"�*úã�� is generated using clock-divider strategy.

The speed up, obtained using dynamic frequency, is in the range of ������S'd Z �Ô" as compared to the

single frequency operation. The authors advocate the use of dynamic frequency clocking alongwith

pipelining for further improvement of perfomance.

Krishna, Ranganathan, and Vijaykrishnan [142, 143] propose a resource and time constrained

energy efficient datapath scheduling for synthesis of circuits using dynamic frequency clocking

and multiple supply voltages (DFMVS). The proposed scheduling scheme DFMVS has two main

66

www.manaraa.com

Table 2.5. Design and Synthesis Works on Variable Frequency or Multiple Frequency

Proposed Design or Power or Operation Voltage or Result
Work Synthesis Performance Mode Frequency

Usami, Igarashi, Design Low-Power Multiple . Z � Z :7����S�0B9 ¼��D�
and et. al. [66, 68] Synthesis Voltage (max)
Usami, Igarashi, Design Low-Power Variable NA �D���
and et. al. [67] Voltage (max)
Ranganathan, Design High Dynamic ��"'dû¼�"D"�*úã�� 1.79-3.0
and et. al. [59, 60] Performance Frequency (times)
Krishna, and Synthesis Low-Power Dynamic .2�A�Ô"#: Z � Z :h�A�Ü¼�0B9 ��d!��¼��
et. al. [142, 143] (Scheduling) Frequency
Papachristou, Synthesis Low-Power Multiple NA ��"��
and et. al. [144] (Allocation) Frequency (max)
Burd, Brodersen, Design Low-Power Variable ������d Z ��R�9 �D�q�
and et. al. [145, 146] Voltage (avg)
Kim and Design Low-Power Frequency NA NA
Chae [63] Scaling
Pouwelse, Design Low-power Variable "#��R�d��A�Ô"�9 NA
and, et. al. [122] Frequency �DS�d��D�#�7*úã �
Acquaviva, Benini, Design Low-power Variable NA ¼�"��
and Riccò [147] Frequency (max)
Benini, and et. al. Design High Variable NA ���D�
[148, 149] Synthesis Performance Latency
Raghunathan, Synthesis High Variable NA ����Ö�G
and et. al. [150] Performance Latency
Nowka and Design Low-power Frequency ���Ô"'dà����R�9 NA
[151, 152] Scaling
Lu, Benini, Design Low-power Frequency �4" Z d���"�ÖD*+ã�� ¼�Ö��
and Michelli [153] Scaling (max)

67

www.manaraa.com

modules, such as dynamic freq sched and modify sched. The first module generates the initial

schedule in which the control steps are clocked at different frequencies. The second schedule is

a schedule modifier that regroups the operations of the intial schedule such that mutiple supply

voltages can be used to reduce the energy consumption. The algorithm is list-based heuristic which

takes unscheduled data flow graph, number of resources with their operating frequencies, and the

time constraint of the whole schedule as input. Experiments are conducted for three operating

voltages (�A�Ô"�9�: Z � Z 9�:h�A�Ü¼�9). Results show that using three supply voltages, an average energy

saving of � Z ����� has been obtained when compared to using a uni-frequency clocking scheme with

single supply voltage.

Papachristou, Nourani and Spining [144] propose a resource allocation technology for low-

power design using multiple frequency. The contribution of the paper is two fold. First, using

nonoverlapping multiple clocking to design a partitioned datapath, so that each partition is as-

signed a distinct clock. For � number of partitions and master clock frequency of r , the operating

frequency of each partition is Ý �F ß . The inactive partitions are ”turned-off” during their off duty cy-

cle to reduce power dissipation. The other contribution is a multiple clock allocation algorithm for

power reduction. Two allocation techniques are proposed. In first scheme, called split-allocation,

DFG is partitioned based on clock assignments and then each partition is synthesised separately.

The second allocation algorithm performs allocation in an integrated way taking into account the

clock assignment of DFG nodes. The advantage of this algorithm is better sharing of the resources.

Similarly, the advantage of split-allocation technique is its adaptibility with any existing allocator.

Experimental results show power reduction with an increase in area penalty.

Burd, Brodersen, and et. al. [154, 145, 146, 155, 50] propose variable voltage (frequency)

based system for low-power and high-perfomance applications. The system consists of an ARM8

core, �7ÖD�<; cache and DC-DC regulator. The operating voltage of the systems is in the range of�����)d Z ��R�9 in [145] and ������d Z � Z 9 in [154]. The three components for implementing dynamic

voltage scaling in general purpose processor are as follows : a microprocessor that can operate at a

wide voltage range, a operating system that can vary processor speed and a regulation loop that can

generate the voltage required at a particular speed. A new component which needs to be added in

68

www.manaraa.com

the operating system is the voltage scheduler. The voltage scheduler controls the processor speed

by writing the desired clock frequency to a system control register. This register value is used in

the voltage-frequency regulation loop. A ring oscillator, whose output frequency is a function of

voltage, serves as the heart of voltage regulator. The authors have reported energy reduction of �D�q�
for MPEG benchmark and reduction of ¼�����G in energy for AUDIO benchmark. In [50], authors

introduce various modes computation of processors, such as fixed throughput mode, maximum

throughput mode and burst throughput mode. The three key principles of energy efficient circuit

design proposed are as follows:

3 High performance is energy efficient,

3 Clock reduction is not energy efficient, and

3 Faster operation can limit efficiency.

Kim and Chae [63] propose a VLSI architecture of MPEG2 decoder using frequency scal-

ing. The system clock is adjusted to lowest possible frequency depending on the current work-

load. The data-dependent applications require less hardware and consume less power than the

data-independent applications due to the use of frequency scaling. The system consists of four

major components, such as clock controller, programmable clock generator, circuit status detector

and synchronizer. The clock controller gets the current status from the system, compares it with

the required status, and changes the clock frequency accordingly. The programmable clock gen-

erator takes the input from the clock controller and generates appropriate frequency. The circuit

status detector guarantees the operating margin of the circuit from the variable clock frequency.

The synchronizer is used to synchronize the signals between flip-flops using different clocks.

Pouwelse, Langendoen, and Sips [122] propose a variable frequency and voltage based mi-

croprocessor system for energy reduction. The authors report that the energy consumption per

instruction at low speed is @= th of the energy required at full speed. The major components of

the developed system (called LART) include Intel StrongARM 1100 �7S�"�*úã�� processor,
Z �D*>;

volatile memory, ¼�*>; non-volatile memory, and voltage regulator. The Linux 2.4.0 operating sys-

tem kernel module is modified to change the clock frequency. The kernel module also adjust the

69

www.manaraa.com

memory parameters that control the read / write cycles on the external bus. It should be noted that

the external memory is not available during the frequency change. The minimum clock frequency

at which the processor can operate is �DSD*+ã�� at "#����S�9 . The authors have studied the performance

of overall system, memory and applications.

Acquaviva, Benini, and Riccò [147] describe a software-controlled approach for adaptively

minimizing energy in embedded systems for real-time multimedia application. The software con-

troller dynamically adjusts processor clock speed (supply voltage) to the frame rate requirements of

the incoming multimedia stream. The targeted CPU is Intel StrongARM1100 processor in which

twelve frequency levels are available by programming a PLL. Multimedia stream processing al-

gorithms take data streams as input. The input stream which consists of frames is processed in

the CPU. Let, $Ç� �7� is the average switching capacitance, 9�f<f is the supply voltage, r is the CPU

frequency, and � �¿{ khl � is the time for processing a frame. The energy consumed for processing a

frame is then given by,

; �4{ khl � 9 Cf<f $o� �7� r � �¿{ k<l � (2.10)

Depending on the output bandwidth for a given time ��lok<� , the following constraint must be satis-

fied for just-in-time computation. @¡ �B� § ² © * @¡ ² §�� (2.11)

Since the frequency can not be adjusted continuously, there will be some idle time. The authors

have reported energy saving up to ¼�"�� per frame.

Benini, Macii, Poncino, and Michelli [148] introduce variable-latency units (called telescopic

units) to improve overall performance. The variable-latency units complete execution in a varaiable

number of clock cycles, depending on the input data given to them. There are two overheads

involved in such design. First a completion signal is needed and second the controller should be

able to synchronize among the components. This is similar to architectural retiming proposed

in [156] and speculative completion proposed in [157]. It should be noted that the speculation

completion is an asynchronous datapath design unit. Suppose, r y is the additional signal of the

telescopic unit, � is the clock cycle time without variable-latency operation, � (is the clock cycle

70

www.manaraa.com

time with telescopic units, and %'���53�. r y 0 is the probability that r y is one. The following condition

must be satisified for throughput improvement.

%��D�53�. r y 0 ¹ C ó ¡ ´ ¡@? ô¡ (2.12)

Heuristic algorithms, such as BDD-based heuristics and sum-of-product (SOP) based heuristics are

proposed for synthesis of telescopic units. Various experiments conducted showed that throughput

improvement is obtained at the cost of area penalty. Benini, Micheli, Macii, Odasso, and Poncino

[149] propose another automatic synthesis technique formulated as time supersetting problem for

synthesizing telescopic units. Raghunathan, Ravi, and Lakshinarayana [150] proposed high-level

synthesis methodology for synthesis of variable latency units proposed above in [148, 149]. The

authors propose novel techniques to reduce the area penalty. The proposed algorithms use iterative

approach and synthesize the circuit under resource constraints. Performance improvement of ����Ö�G
was obtained with maximum area penalty of �q����S�� . It has also been reported that the performance

improvement is accompanied with power savings of
Z �A���D� .

Nowka and et. al. [151, 152] discuss a system-on-a-chip processor using dynamic voltage

and frequency scaling. The voltage or frequency is adaptible to change in performance demand

and power consumption. The targeted processor is fixed voltage IBM PowerPC 405 core. The

operating voltage of the chip is in range ���Ô" d�����R�9 . An on-chip regulator alongwith the PLL

helps in continuously operating the chip even when the supply voltage is modified. When the

demands for resources are low, the active power consumption is reduced using dynamic voltage

scaling, frequency scaling, unit and register level functional clock gating. Both the voltage and the

frequency of the processor are varied using software control and both active and standby power

is minimized. The processor can enter a low-leakage sleep state and a state-preserving deep-sleep

state to minimize standby power consumption.

Lu, Benini, and Michelli [153] discuss the energy reduction of interactive systems for mixed

workloads of multimedia applications using dynamic frequency (voltage scaling). The proposed

technique is software-based works for processors that have only finite frequencies. The main idea

71

www.manaraa.com

is to insert buffers such that constant output can be maintained even though the input rate may

be changing. The multimedia programs are divided into into stages and data buffers are inserted

between them. The data buffers support constant output rates, allow frequency scaling and shorten

the response times of sporadic jobs. Data are processed and stored in the buffers when the processor

runs at a higher frequency. Later, the processor runs at a lower frequency to reduce power and data

are taken from the buffers to maintain the same output rate. Before the buffers become empty, the

processor begins to run at a higher frequency again. The authors construct frequency-assignment

graphs. Each vertex represents the current state of the buffers and the frequencies of the processor.

An efficient graph-walk algorithm that assigns frequencies to reduce energy has been proposed.

The time-complexity of the algorithms are polynomial, one is Ø � ÞÜ9 Þ C � and other Ø � ÞÜ9 Þ � � . The

method reduces the power consumption of an MPEG program by ¼�Ö�� .

2.6 Hardware Based Digital Watermarking Systems

There are several image watermarking algorithms available in current literature, which are im-

plemented using software. The watermarking schemes work in spatial domain, DCT domain and

wavelet domain. However, hardware based watermarking systems are quite few. In this section,

we discuss the hardware based watermarking systems. A comparative view of the proposed water-

marking chips is given in Table 2.6.

Strycker, Termont, Vandewege, Haitsma, Kalker, Maes and Depovere [158] propose a real-

time watermarking scheme for television broadcast monitoring. They address the implementation

of a real-time watermark embedder and detector on a Trimedia TM-1000 VLIW processor devel-

oped by Philips semiconductors. The watermark is in spatial domain. In the insertion procedure,

pseudo-random numbers are added to the incoming video stream. The depth of watermark insertion

depends on the luminance value of each frame. The watermark detection is based on the calculation

of correlation values. Mathai, Kundur and Sheikholeslami [159] present hardware implementation

of the same video watermarking algorithm. The chip is implemented using "#���7R�Õ technology. The

authors did not provide any lay out details for the proposed hardware and did not mention its power

consumption and operating frequency.

72

www.manaraa.com

Table 2.6. Watermarking Chips Proposed in Current Literature

Proposed Type of Target Working Techno- Chip Chip Power
Work Watermark Object Domain logy Area Consumption

Mathai and Invisible Video Wavelet "#���7R�Õ NA NA
et. al. [159] Robust
Tsai and Lu Invisible Image DCT "#� Z ��Õ Z �Ô"�Ö�¼YG Z �Ô"�Ö�¼ ÖD�A����R�á �
[160] Robust áeá C Z � Z 9�:h��"�*úã �
Garimella and Invisible Image Spatial "#��� Z Õ Z ¼�� Z G Z ¼�� Z Z ����Ö�Õ �
et. al. [161] Fragile Õ�á C ������9

A DCT domain invisible watermarking chip is presented by Tsai and Lu [160]. The watermark

systems embeds a pseudo-random sequence of real numbers in a selected set of DCT coefficients.

They also proposed a JPEG architecture incorporating the watermarking module in it. The water-

mark is extracted without resorting to the original image. The authors claim that the watermark

is resistant to the JPEG attacks upto �4"�� compression ratio. The watermark chip is implemented

using TSMC "#� Z ��Õ�á technology and occupies a die size of
Z �Ô"�Ö�¼µG Z �Ô"�Ö�¼Dáeá C for ¼�Ö Z �¯¼ gates.

The chip consumes ÖD�A����R�á � power when operated at ��"�*úã � with
Z � Z 9 supply voltage.

Garimella, Satyanarayan, Kumar, Murugesh and Niranjan [161] propose an watermarking

VLSI arcitecture for invisible-fragile watermarking in spatial domain. In this scheme, the dif-

ferential error is encrypted and interleaved along the first sample. The watermark can be extracted

by accumulating the consecutive LSBs of pixels and then decrypting. The extracted watermark is

then compared with the original watermark for image authentication. The ASIC is implemented

using "#��� Z Õ technology. The area of the chip is
Z ¼�� Z G Z ¼�� Z Õ�á C and consumes

Z ����Ö�Õ � power

when operated at ������9 . The critical path delay of the circuit is �A��RDS���Á .
2.7 This Dissertation

The synthesis techniques discussed in Sections 2.1 and 2.2 are based on a single clock fre-

quency and consider multiple supply voltages, voltage scaling, capacitance reduction, and switch-

ing activity reduction to minimize total energy or average power. However, not both at the same

time. Further, these works have not considered dynamic frequency clocking or transient power

73

www.manaraa.com

reduction. The works in Section 2.3 address only peak power issues and do not include energy

minimization or transient power. It it evident from Section 2.4 and Section 2.5 that voltage scaling

or frequency is an effective method for power reduction and performance improvement. In this dis-

seration, we propose scheduling techniques to minimize total energy (or average power). We also

propose scheduling techinques for peak power and transient power reduction. Behavioral synthe-

sis frameworks are proposed for reduction simultaneous reduction of energy, average power, peak

power and transient power. A new parameter called Cycle Power Function (CPF) is defined which

is an equally weighted sum of normalized mean cycle power and normalized mean cycle differen-

tial power. Minimizing this parameter using multiple supply voltages (MV), dynamic frequency

clocking (DFC) and multicycling results in the reduction of both energy and transient power. Both

ILP and heuristics based approaches have been investigated. In Section 2.6, we have discussed

the few watermarking hardware systems available. In this dissertation we introduce few VLSI im-

plementations of existing watermarking algorithms. We intend to use multiple supply voltage and

variable frequnecy in the watermarking chip design.

74

www.manaraa.com

CHAPTER 3

ENERGY MINIMIZATION

Dynamic frequency scaling has been explored at the CPU and system levels for power op-

timization. In this chapter, we discuss datapath scheduling algorithms that use multiple supply

voltages and dynamic clocking in a co-ordinated manner in order to reduce energy and energy

delay product [54, 55]. The strategy is to schedule high energy units, such as the multipliers at

lower frequencies so that they can be operated at lower voltages to reduce energy consumption

and the low energy units, such as adders at higher frequencies, to compensate for speed. The pro-

posed heuristic based time and resource constrained algorithms have been applied to various high

level synthesis benchmark circuits under different time and resource constraints. This chapter is

organised as follows. Section 3.1 discusses the target architecture model and frequency selection

scheme. Section 3.2 and 3.3 present the time constrained scheduling (TC-DFC) and the resource

constrained scheduling (RC-DFC) algorithms followed by results and conclusions.

3.1 Target Architecture and Datapath Specifications

The target architecture model assumed in the design of the scheduling schemes is shown in

Fig. 3.1. All functional units have one register each and one multiplexor. Each functional unit

feeds into a single register. The register and the multiplexor operate at the same voltage level as

that of the functional units. Level converters are used when a low-voltage functional unit is driving

a high-voltage functional unit [65, 95]. A controller decides which functional units are active in

each control step and those that are not active are disabled using the multiplexors. The controller

has a storage unit to store the parameters ¤ ru¥ � obtained from the scheduling. The cycle frequency

r � (= � ¦�§B¨c©� � m ª) is generated dynamically and a functional unit operating at one of the supply voltages

is activated.

75

www.manaraa.com

Level

Converter Converter

Level

No

FU, 3.0V

FU, 5.0V

FU, 2.4V

Figure 3.1. Level Converters Needed for Stepping up Signal

The datapath is specified as a sequencing data flow graph (DFG) [21]. Each vertex of the DFG

represents an operation and each edge represents a dataflow (or dependency). The DFG does not

support the hierarchical entities. The conditional statements are handles using comparison opera-

tion. Since, the dynamic frequency clocking scheme is useful only in the case of signal processing

applications, we assume that the above does not exist in the directed acyclic DFG representation of

datapaths. Each vertex has attributes that specifies the operation type such as addition, subtraction,

multiplication or null opeations (NOPs).

The delay of a control step is dependent on the delays of the functional unit and the multiplexer

and register pair. Let, 6 { � ö be the delay of the register, 6AlBA7� be the delay of the multiplexor, 6 � A
be the delay of the functional unit and 6<C����º�/C be the delay of the level converter. The worst case

operational delay of a functional unit can be written as :

6EDGF 6 { � öoO+6�lHA7�POI6 � A OI6EC��z�h�JC (3.1)

The register delays include the set-up and propagation delays. The delay of control step 6 � is

the delay of the slowest functional unit in the control step ¤ . Using the above delay model, the

worst case delays of the library components are estimated. For a given base frequency (r6¢ kºw �),
maximum frequencies of each FU is scaled down to operating frequencies given by . �z¦�§B¨b©� � m«ª 0 , where,¤ ru¥ � ��:h�A:4�E�E�E:<ý��K8 ¥ ����L¿Ú�L7� . The value of ¤ ru¥ � is bound by the product of the total number of

resource types and number of voltage levels. For three frequency levels, the possible frequencies

76

www.manaraa.com

* * * * +

* v3 * + <

−

−

NOP v12

v0NOPSource

Sink

c = 0

c = 3

c = 2

c = 1

c = 5

c = 4

Cycles

1 11 1
v10v8v2v1 v6

1

v7 v9 v11

v4

v5

2 2 2 2

3

4

Figure 3.2. HAL Differential Equation Solver (with ASAP labels)

are, � �NM ò m�öºy .c¤ ru¥ � �q0 , � �NMPO �zf�.c¤ ru¥ �e Ã��0 , � �QM n 5 õ .c¤ ru¥ � Ò¼�0 , * M�� � ò m«öhy .c¤ ru¥ � Ã��0 ,* M�� � O �xf�.c¤ ru¥ � ú¼�0 and * M�� ��n 5 õ!.c¤ ru¥ � =R�0 . For example, if the base frequency fed to the

DCU is
Z ÖD*úã�� , then the frequencies generated are, �DRD*úã�� , SD*+ã�� and ¼����D*+ã�� . The clock

frequency for a given control step is the minimum of the operating frequencies of all FUs active in

that step.

3.2 Time Constrained Scheduling

The datapath is represented in the form of a data flow graph (DFG) constructed as a sequenc-

ing graph. Fig. 3.2 shows such a graph for the HAL benchmark. The inputs to the algorithm are

an unscheduled data flow graph (UDFG), the scaled down operating frequencies, and the execu-

tion time constraint � � for the whole schedule. To get more energy savings and at the same time

maintain performance, the multipliers are to be operated at as low frequencies as possible and the

adders at as high frequencies as possible. This objective can be achieved if adders / subtractors are

not operated alongwith multipliers in the same duty cycle. In cases, when they are to be operated

during the same cycle to meet the time constraint, energy savings will come from the multipliers

only. Initially, TC-DFC generates a schedule such that the low frequency operators are scheduled

at earlier steps and the high frequency operators are scheduled at later steps. Later on, the TC-DFC

modifies the schedule by moving operations from one step to another with the objective of meeting

the time constraint. It then finds appropriate clock cycle width and assigns appropriate voltage.

77

www.manaraa.com

Step 1 : Find an ASAP schedule for the sequencing UDFG.
Step 2 : Create a priority list of vertices using the ASAP schedule in Step 1.
Step 3 : Assign control steps to the operations such that the higher priority vertex

scheduled at earlier time stamp, precedence is satisfied, and the multiplications
and ALU operations are not scheduled in the same cycle.

Step 4 : Find the cycles having only ALU operations and, those with only multiplications,
and those with both ALU operations and multiplications (mixed) for the
currently obtained schedule.

Step 5 : Create a priority list of clock cycles such that cycles with only ALU operations
get higher priority than the cycles with only multiplications or those with
mixed operations (cycles with only multiplications get higher priority than
the cycles with mixed operations).

Step 6 : Initialise cycle frequency to the minimum operating frequency.
Step 7 : If time constraint is not satisfied, the highest priority cycle is assigned the next

higher frequency and repeat the step for the next higher priority cycle if necessary.
Step 8 : If any cycle has multiplier operating at highest frequency, then eliminate the cycle

having minimum number of ALU operations, adjust the schedule and go to Step 4.
Step 9 : Do voltage assignment and determine energy details.
Step 10 : Find the cycle frequency index for each cycle.

Figure 3.3. TC-DFC Scheduling Algorithm Flow

3.2.1 Algorithm Flow

Fig. 3.3 shows the flow of the proposed TC-DFC scheduling algorithm. In step 1, an ASAP

schedule for the data flow graph (DFG) is determined. In step 2, the scheduler creates a priority list

of the vertices such that all multiplications (i.e low frequency operators) are grouped with higher

priority than the ALU operations (i.e. high frequency operators, such as additions, subtractions,

comparisons, etc.). Among the multiplication operations higher priority is given to the operations

with smaller ASAP time stamp, same is done for the group of ALU operations. In step 3, the

vertices are time stamped such that no multiplication and ALU operations scheduled to function

concurrently. In addition, it is made sure that operation precedence is satisfied and higher priority

vertex scheduled at earlier time stamp. In step 4, for the current schedule, the cycles are categorised

as, cycles having only ALU operations, only multiplication and both ALU operations and multi-

plication (mixed operations). In step 5, priority list of clock cycles created such that cycles with

only ALU operations get higher priority than cycles with only multiplications or mixed operations.

The cycles with only multiplications get higher priority than the cycles with mixed operations.

78

www.manaraa.com

Further, among the cycles with only ALU (or multiplication) operations higher priority is given to

the cycle having lesser number of ALU (or multiplication) operations. Similarly, among the cycles

with mixed operations higher priority is given to cycles having lesser number of multiplications.

In step 6, initial cycle frequency is taken as minimum operating frequency with the help of Table

3.3. In step 7, in order to fulfil time constraint, the highest priority cycle frequency is increased

using Table 3.3. If needed the process is repeated for the next higher priority cycle. In step 8, if it

is found that a cycle with multiplication is highest voltage then the cycle having minimum number

of ALU operations is eliminated and the schedule is adjusted. In step 9, voltage assignment is done

and energy estimates for entire DFG is found out. In step 10, the cycle frequency index for each

cycle is found out. The pseudo-code for the algorithm is given in Fig. 3.4.

Table 3.1. List of Functions used in the TC-DFC Algorithm

Functions Description Complexity
ASAPScheduler : Determines the ASAP time of the vertices. R .<ÞÔ9 Þ4OWÞ ; Þ�0
CreateVertexPriorityList : Creates a priority list of vertices such that Rà.<ÞÔ9YÞÜ0

the vertex with lower operating frequency
gets the higher priority.

TOP : Finds the first vertex from priority list array. Rà.}�q0
CheckFrequencyConstraint : Checks the frequency constriant in a cycle. Rà.}�q0
Maximum : Finds the maximum value from an array. R .c¤70
CreateCyclePriorityList : Constructs the cycle priority list in an array. R .c¤70
FindMinimumFrequency : Finds the minimum available frequency. R . � � 0
CalculateDelay : Calculates the critical path delay. R .c¤70
FindNextHigherFrequency : Finds the next higher available frequency. Øà. � � 0
FindCycleWithMinimumALU : Finds the control step with minimum Rà.c¤ � ¡ 0

number of ALU operations.
Adjust Predecessor : Adjusts time stamp of predecessor Øà.ºÞÜ9YÞÜ0
Adjust Successor : Adjusts time stamp of successor Øà.hÞÜ9 ÞÜ0
Update CyclePriorityList : Updates the array. Øà.2¤70
Voltage Assignment : Assigns voltage to each vertex. R .<Þ�9YÞÜ0
Find Cycle Frequency Index : Finds cycles frequency indices of all cycles. Rà.c¤40

79

www.manaraa.com

Table 3.2. List of Variables and Data Structures used in the TC-DFC Algorithm Description

Data Structures Descriptions
ASAPSchedule : An array used to store ASAP time stamp of each vertex.
TC-DFCSchedStep : An array used to store TC-DFC time stamp of each vertex.
ScheduledVertexList : An array used to store vertices already scheduled.
VertexPriorityList : An array used to store vertices in a priority order.
CyclePriorityList : An array used to store control steps in a priority order.
TC-DFCNoOfSteps : Total number of control steps of TC-DFC schedule.
CycleFrequencyList : An array used to store frequency of each cycle.
cycle, ControlStepIndicator : Temporary variables.

3.2.2 Pseudocode Description

The list of functions needed in implementation of the algorithm is given in Table 3.1. Similarly,

the data structures or the identifiers used in the algorithm description is summarized in Table 3.2.

The pseudocode of the algorithm is given in Fig. 3.4.

Table 3.3. TC-DFC Freqeuncy Selection : from left � right* M
� ��n 5 õ * M�� � O �xf � �QM�O �xf � �QM ò m«öhy
Frequency ¼����D*+ã�� SD*úã�� �7RD*úã � Z ÖD*úã �¤ ru¥ � 8 4 2 1

Table 3.4. Vertex Priority List

v0 v1 v2 v6 v8 v3 v7 v10 v9 v11 v4 v5 v12
0 1 2 3 4 5 6 7 8 9 10 11 12

In line 01, the ASAP schedule for the UDFG is found out. The procedure CreateVertexPrior-

ityList creates the VertexPriorityList such that the vertex with the lower operating frequency gets

the higher priority to be scheduled at earlier a control step than the lower priority vertices. Ta-

ble 3.4 shows such an list obtained for the DFG given in Fig. 3.2. TC-DFCSchedSteps � ï (line

02) is a data structure that contains the clock cycle step for any vertex >#m . It is initialized to zero

for the source vertex. ScheduledVertexList (line 02) is a data structure to maintain the list of ver-

tices already scheduled which is initialised to the source vertex. The while loop (line 03) takes

the highest priority vertex each time (line 04) and schedules it in an appropriate cycle checking

80

www.manaraa.com

TC-DFCAlgorithm(UDFG, � � , Operating Frequency)J
(01) ASAPScheduler(UDFG); CreateVertexPriorityList(ASAPSchedule); cycle = 1;
(02) TC-DFCSchedSteps ��S = 0; ScheduledVertexList = >UT ; // source vertex scheduled
(03) while(VertexPriorityList V NULL)J
(04) >�m = TOP(VertexPriorityList);
(05) if(>DmXW1 ScheduledVertexList and AllPredecessor � ï 1 ScheduledVertexList)J
(06) if(CheckFrequencyConstraint(cycle))

then cycle = Maximum (TC-DFCSchedSteps) O 1;
(07) else schdule in current cycle;
(08) TC-DFCSchedSteps � ï = cycle; VertexPriorityList = VertexPriorityList d�>Am ;
(09) ScheduledVertexList = ScheduledVertexList YÓ>�m ;_

// end if (05)_
// end while (03)

(10) TC-DFCNoOfSteps = Maximum(TC-DFCSchedSteps);
(11) CreateCyclePriorityList(CurrentSchedule, TC-DFCNoOfSteps);
(12) CycleFrequencyList = FindMinimumFrequency(Table 3.3);
(13) �gw = CalculateDelay(CycleFrequencyList); ControlStepIndicator = 1;
(14) while (ControlStepIndicator)J
(15) while (��w X � �)J
(16) ¤£m = TOP(CyclePriorityList);

CycleFrequencyList � ï = FindNextHigherFrequency(Table 3.3);
(17) �gw = CalculateDelay(CycleFrequencyList);_

// end while (15)
(18) if (no multiplier is operating at highest frequency) then ControlStepIndicator = 0;
(19) elseJ
(20) ¤£m = FindCycleWithMinimumALU(for all cycle ¤7m);
(21) for each > m 1µ¤ m do reduce time stamp of > m

and adjust Predecessor � ï and Successor � ï
(22) CycleFrequencyList = FindMinimumFrequency(Table 3.3);
(23) �gw = CalculateDelay(CycleFrequencyList); Update CyclePriorityList;
(24)

_
// end else (19)_

// end while (14)
(25) Do voltage assignment ; Find cycle frequency index ;_

// End Algorithm TC-DFC

Figure 3.4. Pseudo-code for TC-DFC Scheduling Algorithm

81

www.manaraa.com

for the frequency constraint violation provided all of its predecessors are already scheduled. The

function CheckFrequencyConstraint (line 06) helps in checking the frequency constraint. This as-

sures that two vertices operating at different frequencies are not scheduled during the same cycle.

TC-DFCNoOfSteps (line 10) is the number of control steps for the schedule already generated.

Procedure CreateCyclePriorityList (line 11) creates the CyclePriorityList in which the higher

priority cycles will be assigned higher frequencies. Table 3.5 shows such a list obtained for the

schedule generated in using lines 01-09. The data structure CycleFrequencyList (line 12) is used to

store the operating frequency of each cycle. Initially, each cycle is assigned the minimum frequency

from Table 3.3, and the critical delay of the schedule is found (line 12). While the time constraint

is not satisfied, with the help of CyclePriorityList appropriate clock cycles is assigned to the next

higher frequency and checked if time constraint is satisfied (line 14-24). The algorithm terminates

if no cycle has multiplier scheduled operating at highest frequency (line 18). Otherwise, the cycle

having minimum number of ALU is eliminated (line 20) and CyclePriorityList is updated, and

lines 14-24 are repeated. Table 3.6 shows an updated CyclePriorityList. Finally, proper voltage

value are assigned to the vertices. The algorithm also calculates the energy value of the schedule.

Algorithm finds the cycle frequency index using CycleFrequencyList. The final scheduled datapath

is shown in Figs. 3.5(a), 3.5(b) and 3.5(c) for different time constraints.

Table 3.5. Cycle Priority List : � � �N��	�� �� ������������	�� ��
Cycles c5 c4 c3 c2 c1 c6 c0

Priorities 0 1 2 3 4 5 6

Table 3.6. Cycle Priority List : � � �=������	�� ��
Cycles c4 c3 c2 c1 c5 c0

Priorities 0 1 2 3 4 5

3.2.3 Time Complexity

Let there be ÞÜ9YÞ number of vertices and Þ ; Þ number of edges in the DFG. Suppose the number

of control steps found out from the ASAP scheduling is ¤ . Let
� � denote the number of frequency

82

www.manaraa.com

*

−

−

*

*
v7v3

NOP v12

v0NOP

**
v1 v2

*

v9
+ +

v10

v4

v5

v6
v8

c = 1

c = 2

c = 3

cfi = 1

cfi = 1

c = 4

c = 5

cfi = 1

c = 6

c

c

c

c

c

c = 0

Sink

Source
Cycles

5.0 V

v11

5.0 V
<

5.0 V

5.0 V5.0 V

2.4 V 2.4 V

2.4 V 2.4 V

2.4 V2.4 V
cfi = 8

cfi = 8

(a) Time Constrained : Z ªK[]\�^ _a` Z ª �

*

−

−

*

*
v7v3

NOP v12

v0NOP

**
v1 v2

*

v9
+ +

v10

v4

v5

v6
v8

c = 1

c = 2

c = 3

cfi = 1

cfi = 1

c = 4

c = 5

cfi = 1

c = 6

c

c

c

c

c

c = 0

Sink

Source
Cycles

5.0 V

v11

5.0 V
<

5.0 V

5.0 V5.0 V

2.4 V 2.4 V2.4 V2.4 V

cfi = 4 3.3 V 3.3 V

cfi = 8

(b) Time Constrained : Z ª@[�bc^ dcea` Z ª �
*

c = 0

*

*

*
v7v3

v0NOP

*

Source

v1 v2
*

+
v10

v6
v8

c = 1

c = 2

c = 3

cfi = 1

c = 4

cfi = 1

c

c

c

c
<

v4

Cycles

v11

5.0 V

v5

5.0 V

2.4 V 2.4 V2.4 V2.4 V

cfi = 4 3.3 V 3.3 V

−

−
5.0 V

5.0 V

c = 5 NOP v12Sink

cfi = 8

v9
+

3.3 V

(c) Time Constrained : Z ª [�bc^ eG` Z ª �
Figure 3.5. Schedules Obtained for HAL Benchmark for Different Time Constraints using TC-DFC

83

www.manaraa.com

levels and
� ¡ denote the number of resource types. Based on the time complexity of the different

functions given in Table 3.1, we provide the following analysis for the worste-case running time of

the TC-DFC algorithm. Time taken by the instruction from line 01-02 is R .<ÞÜ9 Þ4OWÞ ; ÞÔ0�OfR .<ÞÜ9 ÞÜ0 .
The running time of the code-segment line 03-09 is R .c¤�ÞÔ9 ÞÜ0 . Similarly, R .c¤70�OgR . � � 0 is the

running time of the code segment line 10-13. Assuming the while loops are executed for constant

number of time (independent of the input size ÞÜ9YÞ or Þ ; Þ), the time complexity of the code segment

line 14-25 is R .c¤ � ¡�0�OgR .<ÞÜ9 ÞÔ0�OgR . � � 0�OgR .2¤70 . Without loss of generality, we can assume

that the
� ¡�: � � and ¤ are upper bounded by the number of vertices ÞÜ9 Þ . Using this assumption the

overall running time of the algorithm is expressed as : R .<ÞÜ9 Þ7OWÞ ; ÞÔ0�OhR .<ÞÜ9 Þ4ÞÜ9YÞ�0 . For strongly

data-dependency, we have Þ ; Þt� ÞÜ9 Þ C and for weak data-dependency Þ ; Þ ¹'¹ ÞÜ9 Þ C . In either

case, the simplified time-complexity of the TC-DFC scheduling algorithm is ÞÜ9YÞ C , meaning the

time-complexity is polynomial to the number of vertices (operations) in the data flow graph.

3.3 Resource Constrained Scheduling

The objective of RC-DFC is to minimize the energy-delay-product while assigning a schedule

for the DFG. For a resource ¥ operating in clock step ¤ , let, (i) ��mb® � be the switching, (ii) $tmb® � be

the load capacitance and (iii) 9vmb® � be the operating voltage. If a level converter is needed, it is

considered as a resource needed in the particular clock cycle in which it needs to step up the signal.

If p is the total number of clock cycles for the DFG, p � � is the number of resources active in

cycle ¤ , and r � is the cycle frequency, then, the total energy consumption of the DFG is given by

Eqn. 3.2.

; � �ji� ��@ �ji : ªm���@ �gmb® � $�mb® � 9 Cmb® � (3.2)

The energy-delay-product .c;^Ä %10 is characterised by Eqn. 3.3.

;1ÄY% � ; � 	T� � Ý �ji� ��@ �ki : ªmE��@ ��m ® � $�mb® � 9 Cm ® � ß 	 �ki� ��@ @� ª (3.3)

The objective of RC-DFC is to minimize the ;^Ä % given as equation 3.3. RC-DFC at-

tempts to operate the multipliers at as low frequency as possible, the resulting decrease in per-

84

www.manaraa.com

Table 3.7. Frequency Selection (From Left to Right in Each Step)

FUs in a cycle Frequency priority order

MULT - * M�� � n 5 õ :h* M
� � O �zfD:h* M�� � ò m«öhyMULT ALU * M�� ��n 5 õ�:<� �QM n 5 õ�:h* M�� � ò m«öhy
- ALU � �NM ò m«öhy :<� �QM�O �xfD:<� �NM n 5 õ

Table 3.8. Resource Look-up Table (order, From Left to Right)

Clock MULT ALU
Cycle 2.4 V 3.3 V 5.0 V 5.0 V 3.3 V 2.4 V

c 1 2 1 1 1 0

formance is compensated by operating the ALUs at as high frequency as possible. Depending

on which functional units are active in a given cycle, the algorithm determines the frequency

using a lookup table (LUT), called ”frequency selection LUT”, such as the one shown in Table

3.7 scanning it left to right. In a schedule, if only multipliers are needed in a particular cycle

the frequency selection is in the order * M�� � n 5 õ :h* M
� � O �zfD:h* M�� � ò m«öhy . If both multipliers

and the ALUs are all operating in a given clock cycle, the frequency selection is in the order* M�� ��n 5 õ�:<� �QM n 5 õT:h* M�� � ò m�öºy . If only ALUs are operating in a control step, then the fre-

quency selection is in the order � �NM ò m«öhy :<� �NM�O �xfD:<� �NM n 5 õ . Another lookup table called ”re-

source assignment LUT” constructed considering the resource constraints is used to match the

selected frequency with a corresponding voltage level. The resources are assigned scanning the

LUT, from left to right. The scheduling algorithm uses heuristics to minimize the number of times

level conversions needed. An example resource assignment LUT, is shown in Table 3.8 with re-

source constraints: one MULT at �A�Ü¼�9 , two MULT at
Z � Z 9 , one MULT at �A�Ô"�9 , one ALU at

Z � Z 9
and one ALU at �A�Ô"�9 . The dimension of this LUT depends on the total number of clock cycles

of the schedule and the number of resource types. It should be noted that the arrangement of the

MULTs is in the order from low to high voltage, whereas for the ALUs it is from high to low. The

LUT is updated during each assignment to make sure that the resource-constraints are not violated.

85

www.manaraa.com

Step 1 : Derive ASAP and ALAP schedules for the unscheduled DFG.
Step 2 : Determine the number of resources at different operating voltages.
Step 3 : Using above number of resources modify the schedules obtained in Step 1.
Step 4 : Calculate the total number of control steps which is the larger

those of ASAP and ALAP schedules from Step 3.
Step 5 : Construct the ”resource assignment LUT” and ”frequency selection LUT”.
Step 6 : Find the vertices having non-zero mobility and vertices with zero mobility and

assume ASAP schedule in Step 3 as the current schedule.
Step 7 : Do voltage and frequency assignment using the current schedule and the LUTs.
Step 8 : Taking a vertex with non-zero mobility time stamp it using LUTs such that

energy delay product of the execution of whole DFG is minimum.
Step 9 : Adjust current schedule, predecessor and successor time stamps, LUTs, and

repeat Steps 7 and 8 to time stamp remaining non-zero mobility vertices.
Step 10 : Determine the clock frequency index for each cycle.

Figure 3.6. RC-DFC Scheduling Algorithm Flow

3.3.1 Algorithm Flow

Fig. 3.6 shows the flow of the proposed algorithm. The data flow graph is modeled as a

sequencing graph [21]. The inputs to the algorithm are an unscheduled data flow graph (UDFG), the

resource constraints which include the number of resources, their corresponding operating voltages

and the scaled down operating frequencies. In step 1, the scheduler determines the ASAP and the

ALAP schedules for the UDFG. In step 2, the total number of resources is found out as the sum of

each resource at different voltage levels. In step 3, the ASAP and ALAP schedules of step 1 are

modified using the number of resources found in step 2. In step 4, the total number of control steps

for both ASAP and ALAP schedule are found out and the number of control steps for the final

steps is assumed to be the maximum of the two. In step 5, the ”resource assignment LUT” and

”frequency selection LUT” are constructed. In step 6, the vertices having non-zero mobility and

the vertices with zero mobility are found out and the current schedule is initialized as the ASAP

schedule obtained in step 3. In step 7, voltage and frequency assignments are made for the current

schedule using the LUTs. In step 8, the scheduler finds a proper step for each vertex having non-

zero mobility such that the number of level converters needed for the execuction of the whole DFG

is minimum. As long as the voltage and frequency assignments follow the LUTs order, energy

consumption is kept to a minimum. In step 9, current schedule, LUTs are adjusted to satisfy the

86

www.manaraa.com

Table 3.9. List of Functions used in the RC-DFC Algorithm

Functions Description Complexity
ASAPScheduler : Determines ASAP time of the vertices. R .<ÞÜ9 Þ4OWÞ ; ÞÔ0
ALAPScheduler : Determines ALAP time of the vertices. R .<ÞÜ9 Þ4OWÞ ; ÞÔ0
ModifySchedule : Modifies the unconstrained schedules to R .<ÞÜ9 Þ4OWÞ ; ÞÔ0

incorporate resorce constraints.
ConstructResAssignmentTable : Constructs resource assignment LUT. Rà.c¤ � � � ¡i0
Maximum : To find maximum of to control steps. R .}�q0
FindResTypeForEachVertex : Identifies the FU needed for each vertex. R .<ÞÜ9 ÞÜ0
ConstructFreqSelectionLUT : Constructs frequency selection LUT. R . � � 0
FindMobileVertexList : Finds the mobility of each vertex. R .<ÞÜ9 ÞÜ0
AllocateVoltAndFreq : Allocates the voltage and frequency levels R .c¤�ÞÔ9 Þ � � � ¡i0

using LUTs and current schedule.
CalculateEDP : Calculates the EDP of the whole DFG. Rà.<ÞÜ9 ÞÜ0
AdjustSchedule : Adjusts the predessor and successor time Øà.<ÞÔ9 ÞÜ0

stamps such that the precedence is satisfied.
Update Res Assignment LUT : Updates resource assignment LUT. Rà.}�q0
FindEnergyAndDelay : Determines energy and delay. R .<ÞÜ9 ÞÜ0
FindCycleFreqIndex : Finds cycles frequency indices. R .c¤70

precedence. In step 10, cycle frequency indices are found for all cycles which would be stored

in the controller and would be fed to the DCU for dynamic frequency generation. The algorithm

terminates once all non-zero mobility vertices are scheduled.

3.3.2 Pseudocode of the Resource Constrained Algorithm

The list of functions needed in implementation of the algorithm is given in Table 3.9. Similarly,

the data structures or the identifiers used in the algorithm description is summarized in Table 3.10.

The pseudocode of the algorithm is given in Fig. 3.7.

The inputs to the algorithm are the unscheduled data flow graph (UDFG) and resource con-

straints which includes number and type of each functional units, the operating voltage levels and

the operating frequencies. The procedures in line 01, ASAPScheduler and ALAPScheduler find the

unconstrained ASAP and ALAP schedules for the UDFG respectively. In line 02, the total number

of multiplier and ALU FUs with different voltage levels is determined. For example, if the resource

constraint is 2 ALUs at �A�Ü¼�9 , 1 ALU at
Z � Z 9 , 1 multiplier at �A�Ü¼�9 , and 3 multipliers at �A�Ô"�9 , then

87

www.manaraa.com

RC-DFCAlgorithm(UDFG, FUs, Voltage Levels, Operating Frequencies)J
(01)ASAPScheduler(UDFG); ALAPScheduler(UDFG);
(02)MULT = � Multipliers of different voltage levels;

ALU = � ALUs of different voltage levels;
(03)ModifySchedule(ASAPSchedule, MULT, ALU);

ModifySchedule(ALAPSchedule, MULT, ALU);
(04)NoOfControlSteps = Maximum(ASAPControlSteps, ALAPControlSteps);
(05)ConstructResAssignmentLUT(NoOfControlSteps, FUs);
(06)FindResTypeForEachVertex(UDFG); ConstructFreqSelectionLUT(Operating Frequency);
(07)FindMobileVertexList(ASAPSchedule, ALAPSchedule);

CurrentSchedule = ASAPSchedule;
(08)while(NonZeroMobilityVertexList is NOT empty)J
(09) max = dml ; AllocateVoltAndFreq(CurrentSchedule, LUTs);
(10) CurrentEDP = CalculateEDP (VoltageArray,FrequencyArray);
(11) for each >DmG1 NonZeroMobilityVertexListJ
(12) start = CurrentSchedule[>�m]; end = ALAPSchedule[>�m];
(13) for cycle = start � end in steps of 1J
(14) TempSchedule = AdjustSchedule(CurrentSchedule, >Am , cycle);
(15) AllocateVoltAndFreq(TempSchedule, LUTs);
(16) TempEDP = CalculateEDP(VoltageArray,FrequencyArray);
(16) ExtraEDP = CurrentEDP d TempEDP;
(17) if(ExtraEDP

X
max)J

(18) max = ExtraEDP; CurrentVertex = >�m ;
(19) CurrentCycle = cycle;_

// end if (17)_
// end for (13)_

// end for (11)
(20) CurrentSchedule = AdjustSchedule(CurrentSchedule, CurrentVertex, Currentcycle);
(21) Update the ”resource assignment LUT”;
(22) ZeroMobilityVertexList = ZeroMobilityVertexList Y CurrentVertex;
(23) NonZeroMobilityVertexList = NonZeroMobilityVertexList d CurrentVertex;_

//end while(08)
(24)AllocateVoltAndFreq(CurrentSchedule, LUTs);
(25)EnergyAndDelayDetails(VoltageArray, FrequencyArray);

FindCycleFreqIndex(FrequencyArray);_
// End Algorithm RC-DFC

Figure 3.7. Pseudo-code for RC-DFC Scheduler

88

www.manaraa.com

Table 3.10. List of Variables and Data Structures used in the RC-DFC Algorithm Description

Data Structures Descriptions
ASAPSchedule : An array used to store ASAP time stamp of each vertex.
ALAPSchedule : An array used to store ALAP time stamp of each vertex.
CurrentSchedule : An array used to store current schedule time stamp.
TempSchedule : An array used to store temporary schedule time stamp.
MULT : Number of multipliers at all voltage levels.
ALU : Number of ALUs at all voltage levels.
ASAPControlSteps : Total number of control steps of ASAP schedule.
ALAPControlSteps : Total number of control steps of ALAP schedule.
NoOfControlSteps : Number of control steps of the schedule.
ResAssignmentLUT : Resource assignment look-up table.
FreqSelectionLUT : Frequency selection look-up table.
max, start, end, cycle : Temporary variables.
CurrentEDP, TempEDP, ExtraEDP : Temporary variables.
CurrentVertex, CurrentCycle : Temporary variables.
VoltageArray : An array used to store operating voltage for each vertex.
FrequencyArray : An array used to store operating fequency for each cycle
ZeroMobilityVertexList : An array storing the vertices with zero mobility.
NonZeroMobilityVertexList : An array storing the vertices with non-zero mobility.

the number of ALUs is 3 and the number of multipliers is 4. Using the number of multipliers and

ALUs found above as initial resource constraint (with relaxed voltage constraint), the ModifySched-

ule procedure (line 03) modifies the ASAP and ALAP schedules so that the resource constraints

are not violated. In this process, the mobility of the vertices are restricted to great extent and the

search space for the following steps reduces. Next, the total number of cycles for the schedule is as-

sumed as the maximum of the number of cycles for the ASAP and ALAP schedules (line 04). The

resource assignment LUT is constructed (similar to Table 3.8) in line 05 whose size depends on

(NoOfControlSteps * NoOfResourceTypes). The procedure FindResTypeForEachVertex (line 06)

identifies the functional unit(s) required at each vertex of the DFG. In line 06, frequency selection

LUT similar to Table 3.7 is constructed. The FindMobileVertexList procedure (line 07) takes as

input the modified ASAP and the modified ALAP schedules (line 04) to determine two lists: the

list, ZeroMobilityVertexList, containing the vertices with zero mobility (same ASAP and ALAP

89

www.manaraa.com

time stamps) and another, NonZeroMobilityVertexList, containing the non-zero mobility vertices

(different ASAP and ALAP time stamps).

In line 07, the CurrentSchedule is initialized as the modified ASAP schedule (obtained in line

03). The procedure AllocateVoltAndFreq (lines 09 and 24) allocates the voltage levels and fre-

quency levels to the FU’s using the LUTs and the current schedule. This procedure returns two

lists: one containing the assigned voltage of each vertex (VoltageArray) and the other (Frequenc-

yArray) containing the selected frequency. FrequencyArray is in turn used to derive the ¤ ru¥ � for

the control steps. The procedure CalculateEDP (line 10) the energy delay product of the whole

DFG using a schedule with voltage assignment stored in VoltageArray and frequency contained

in FrequencyArray. The procedure AdjustSchedule (lines 14 and 20) schedules each vertex to a

specific cycle while adjusting its predecessor and successor time stamps. The for loop (lines 11

to 19) considers all the vertices from the NonZeroMobilityVertexList and finds a suitable vertex

and its time stamp such that the energy delay product of the whole DFG with current schedule is

minimum. In line 21, resource assignment LUT is updated. The while loop (lines 08 to 23) termi-

nates when all the vertices with non-zero mobility have been assigned the proper time stamp. The

procedure FindEnergyAndDelay (line 25) determines the energy consumption and execution time

for the schedule. Line 25, FindCycleFreqIndex finds cycles frequency indices of all cycles which is

going to help in dynamic frequency generation. Figure 3.8 is obtained after executing the RC-DFC

algorithm for the resource constraint (one MULT at �A�Ü¼�9 , one MULT
Z � Z 9 , one ALU at

Z � Z 9 and

one ALU at �A�Ô"�9).

3.3.3 Time Complexity

Let there be ÞÜ9 Þ number of vertices and Þ ; Þ number edges in the DFG, out of which ÞÜ9gl)Þ
number of vertices have mobility and the maximum mobility of any mobile vertex is �¿l . Let

� �
denote the number of voltage levels and

� � denote the number of frequency levels. Suppose the

number of control steps found out from the ASAP scheduling is ¤ . Assuming that
� � and

� � are

upper bounded by ÞÜ9 Þ , the running time of the code segment from line 01-07 is R .<ÞÜ9YÞqOWÞ ; ÞÔ0OnR .c¤ � � � ¡i0 . The time-complexity of the instruction in line 11-19 is R .c¤�ÞÔ9 Þ � � � ¡ Þ�9�l-Þ}�zl�0 .
90

www.manaraa.com

c = 2

ccfi = 8

cfi = 2

c = 1

c

c = 0

Cycles

c = 3

ccfi = 8

c = 11
cfi = 1c

c = 10

ccfi = 1

c = 9
cfi = 1c

c = 8

cfi = 1c

c = 7
cfi = 1c

cfi = 1

c = 6

c

c = 5

ccfi = 8

c = 4

ccfi = 8

v9

*

v7

v6

2.4V 3.3V

3.3V

3.3V

5.0V

v5
+

*

* *

*

2.4V

v15

3.3V

v14v13

3.3V

v12

3.3V2.4V

v11

3.3V5.0V

v3v10

3.3V

v2

v8

v18

5.0V

v17

+
v20

v21

5.0V

v23

c = 12 v24Sink NOP

v22

5.0V

5.0V

5.0V

5.0V

+

+

+

+

v19

+
5.0V

v4

v1

Source v0
NOP

++

+*

++

5.0V

++

*
v16

*
+

5.0V

2.4V

Figure 3.8. Final Schedule of FIR Filter DFG (using RC-DFC)

The code-segment line 09 to 19 has running time R .c¤�ÞÔ9 Þ � � � ¡ ÞÔ96l-Þx�xl�0uOoRà.<ÞÜ9YÞÔ0vOnR .c¤�ÞÔ9 Þ � � � ¡�0 +R .c¤�ÞÔ9YÞ � � � ¡ ÞÜ96l-Þx�xl�0 . The running time of the code segment line08-19 is R Ý ¤�ÞÔ9YÞ � � � ¡tÞÜ96l-Þ C �zl ß .

The time complexity of line 20-25 is Rà.<ÞÜ9YÞÜ0tOnR .b¤�ÞÔ9 Þ � � � ¡i0�OnRà. ¤70t pR .2¤�ÞÜ9 Þ � � � ¡i0 . So,

the running time of the overall algorithm is R .hÞÜ9 Þ7ONÞ ; ÞÜ0vOnRà.c¤ � � � ¡i0vOqR Ý ¤�ÞÜ9 Þ � � � ¡oÞÜ9�l¶Þ C �xl ßOnR .c¤�ÞÔ9 Þ � � � ¡i0u kR .<ÞÜ9 Þ7OWÞ ; ÞÔ0�OqR Ý ¤�Þ�9YÞ � � � ¡oÞÔ9�l)Þ C �zl ß . Assuming that Þ ; Þ is upper bounded

by ÞÜ9 Þ C and ÞÜ9 l Þ is upper boounded by ÞÜ9 Þ , the above expression can be simplified to ØùÝ4¤�ÞÔ9 Þ � � � � ¡ � l ß .

3.4 Experimental Results

Both RC-DFC and TC-DFC schedulers were implemented in C and tested with selected bench-

mark circuits. The benchmarks used are :

3 Auto-Regressive (ARF) filter [162]

3 Band-Pass filter (BPF) [27]

91

www.manaraa.com

3 Elliptic-Wave filter (EWF) [163]

3 DCT [164]

3 FIR filter [91]

3 HAL differential equation solver [21].

The FUs used are ALUs and multipliers. The energy values are computed using the datapath

components given in [54, 55]. The following notations are used to express the results :

3 ; ÷ and ; � are the total energy consumption (in ägÅ) for single supply voltage and multiple

supply voltage operations respectively.

3 ;1ÄY% ÷ and ;1ÄY% � are the energy-delay-products (in �4"6´ @�r Å�d[Á) for single supply volt-

age and single frequency and for multiple supply voltage and dynamic clocking operations

respectively.

3 � ÷ and � � are the corresponding delays (in ��Á) for the two modes of operations.

3 p ÷ denotes the number of clock steps of the schedule for single supply voltage and and

single frequency operations.

3 p � is the equivalent clock steps of � � found out taking the delay of slowest functional unit

as the base clock width in case of multiple voltage operation.

3 The percentage energy savings is calculated as, s¶;¾ ó °ut ´ °wv ô° t 	��4"D" . In similar manner,

we calculated percentage reduction in EDP which is denoted as sV;^Ä % .

For RC-DFC scheduler, the experimental set-up is as follows. The algorithm was tested using

the different sets of resource constraints listed in Table 3.11. The experimental results for var-

ious benchmark circuits are reported in Table 3.12. The energy estimation includes the energy

consumption of the overhead units. It is assumed that each resource has equal switching activity.

The results are reported for two supply voltage and for switching "#��� . It is obsorved that the

energy consmption is increased for higher switching and decreased for lower switching activity,

92

www.manaraa.com

Table 3.11. Resource Constraints used in our Experiements

Resource Constraints Assigned
Multipliers ALUs Serial No.

3.3 V 5.0 V 3.3 V 5.0 V (RC)

2 1 1 1 1
3 0 1 1 2
2 0 0 2 3
1 1 0 2 4

but, under the assumption that switching is same for each resource, the percentage energy savings

is not affected. We also conducted experiments with three supply voltage levels and it is found

that the percentage energy savings could only increase by ��� . Fig. 3.9(a) shows the percentage

savings (average s¶;) averaged over all resource constraints. From the chart it is evident that the

scheduling yields approximately equal savings for all kinds of benchmark circuits. The EDP re-

duction (average s¶;1ÄY%) averaged over all resource constraints are shown in Fig. 3.9(c). From

the above, we may conclude that the scheduling algorithm yields appreciable energy savings and

EDP reduction. In order to find the right combination of the types and the number of resources that

will yield the best results in terms of energy reduction and high performance, we plotted energy

consumption (%) versus time ratio (
¡ v¡ t), which is nothing but the the configuration correspoding

to maximum s¶;^Ä % . Based on this analysis, the processor configurations that yield the lowest

execution time for each benchmark is listed in Table 3.13.

The TC-DFC scheduler was tested for three different time constraints: 1.5, 1.75 and 2.0 times

critical path delay (� ��). The voltage constraint is relaxed unlike the RC-DFC. The results for

various benchmark circuits are reported in Table 3.14. Fig. 3.9(b) shows the chart indicating

the energy savings for different benchmarks averaged over all time constraints. Our observation

is that circuits which require equal number of ALUs related operations (addition, subtraction or

comparison) and multiplier operations save more energy. The energy savings increased as the time

constraints relaxed from �����¯� �� to �A�Ô"�� �� .
The energy savings from the proposed RC-DFC scheduling algorithm is listed alongwith other

resource constrained multiple voltage scheduling algorithms in Table 3.15. The minimum and

93

www.manaraa.com

Table 3.12. Energy Details for Different Benchmarks (for �û �"#���) using RC-DFC Scheduler

R Energy Estimates Energy-Delay-Product Time Estimates
C .�ägÅ�0 � �4"#´ @�r Å�Á � .b��Á or cycles 0; ÷ ; � s¶; ;^Ä % ÷ ;1ÄY% � s¶;^Ä % p ÷ � ÷ � � p �

(1) 1 36168 21768 40 20093 19954 1 10 556 917 9
A 2 36168 18205 50 20093 16688 17 10 556 917 9
R 3 36168 19065 47 20093 18006 10 10 556 944 9
F 4 36168 27617 24 26121 31452 NA 13 722 1139 10

Average Data 40.3 7.0
(2) 1 27654 16491 40 13827 14659 NA 9 500 889 8
B 2 27654 14175 49 13827 12600 9 9 500 889 8
P 3 27654 14827 46 13827 12356 11 9 500 833 8
F 4 27654 20172 27 26118 23253 11 17 944 1153 10

Average Data 40.5 7.8
(3) 1 19404 10802 44 17248 12902 25 16 889 1194 11
E 2 19404 10802 44 17248 12902 25 16 889 1194 11
W 3 19404 10853 44 17248 11154 35 16 889 1028 10
F 4 19404 11922 39 29106 17055 41 27 1500 1431 12

Average Data 42.8 31.5
(4) 1 30675 17846 42 25547 26274 NA 15 833 1472 14
D 2 30675 17846 42 25547 26274 NA 15 833 1472 14
C 3 30675 18008 41 25548 25511 0 15 833 1416 13
T 4 30675 18008 41 49392 37267 25 29 1611 2069 17

Average Data 41.5 6.3
(5) 1 18678 9979 47 11414 6653 42 11 611 667 7
F 2 18678 9979 47 11414 6653 42 11 611 667 7
I 3 18678 10126 45 11414 6470 43 11 611 639 6
R 4 18678 10127 46 15565 12096 22 15 833 1194 10

Average Data 46.3 37.3
(6) 1 13596 8927 34 3021 2728 10 4 222 306 3
H 2 13596 6433 53 3021 1966 35 4 222 306 3
A 3 13596 6648 51 3021 2401 21 4 222 361 4
L 4 13596 10211 25 3777 4396 NA 5 278 431 4

Average Data 40.8 16.5

Overall Average Data 42.0 17.7

94

www.manaraa.com

Table 3.13. Configurations for Minimum EDP using RC-DFC

Bench- Processor Configurations
mark Multipliers ALUs

Circuits 3.3 V 5.0 V 3.3 V 5.0 V

AR 3 0 1 1
BPF 2 0 0 1
EWF 2 0 0 1
DCT 1 1 0 1
FIR 2 0 0 2
HAL 3 0 1 1

Table 3.14. Energy Savings using TC-DFC Scheduler

Bench. Time Energy consumption and savings
Circuits Cons. ; ÷ .�ägÅ�0 ; � .�ä�Å�0 s¶; ./�V0

1.5 � �� 36186 21491 41
(1) ARF 1.75 ���� 36186 18139 47

2.0 � �� 36186 15274 58
Average Data 48.67

1.5 � �� 27672 15187 45
(2) BPF 1.75 ���� 27672 9350 66

2.0 � �� 27672 8249 70
Average Data 60.33

1.5 � �� 19422 12335 36
(3) EWF 1.75 ���� 19422 8814 55

2.0 � �� 19422 5341 73
Average Data 54.67

1.5 � �� 30675 14611 52
(4) DCT 1.75 ���� 30675 14489 53

2.0 � �� 30675 7714 75
Average Data 60.0

1.5 � �� 18696 4910 74
(5) FIR 1.75 ���� 18696 4877 74

2.0 � �� 18696 4820 74
Average Data 74.0

1.50 � �� 13614 7808 43
(6) HAL 1.75 ���� 13614 6821 50

2.0 � �� 13614 4449 67
Average Data 53.33

Overall Average Data 58.50

95

www.manaraa.com

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

Different Benchmark Circuits −>

A
ve

ra
ge

 E
ne

rg
y

S
av

in
gs

 (
%

)
−

>

(a) Energy Reduction for RC-DFC

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

Different Benchmark Circuits −>

A
ve

ra
ge

 E
ne

rg
y

S
av

in
gs

 (
%

)
−

>

(b) Energy Reduction for TC-DFC

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Different Benchmark Circuits −>

E
D

P
 R

ed
uc

tio
n

(%
)

−
>

(c) EDP Reduction for RC-DFC

Figure 3.9. Average Energy and EDP Reduction for Benchmarks

maximum range of energy savings are shown in the table. As clear from column (15) of Table

3.12, RC-DFC gives better energy savings for lesser time penalties. The energy savings obtained

using different existing multiple voltage based time-constraints scheduling algorithm is shown in

Table 3.16. In all cases, the time constraints are ������	�� �� to �A�Ô"
	T� �� .
3.5 Conclusions

Our aim is to use frequency scaling concepts for energy-efficient high-performance special

propose processor (ASIC) design. The energy reduction is achieved by voltage reduction and the

performance is maintained by using DFC alongwith multiple voltages. We developed resource-

96

www.manaraa.com

Table 3.15. Savings for Various Resource Constrained Schedulings

Ben. % Energy savings and time penalties (�) in cycles
mark RC-DFC Shiue[95] Sarrafzadeh[90] Johnson[65]
Ckt s¶; p � s¶; � s¶; � s¶; �

ARF 24-58 9-10 11-14 11-16 16-20 17-24 16-59 10-18
BPF 27-56 8-10 - - - - - -
EWF 38-61 10-13 14-14 17-20 13-32 21-25 11-50 12-24
DCT 41-63 13-18 - - - - - -
FIR 20-67 6-10 - - 16-29 10-15 28-73 5-10

HAL 29-62 2-3 19-28 5-6 - - - -

Table 3.16. Savings for Various Time Constrained Schedulings

Bench- % Energy savings
marks TC-DFC Chang[51] Shiue[95] Manzak[97]

AR 41-58 40-63 38-76 25-61
BPF 45-70 - - -
EWF 36-73 44-69 13-76 10-55
FDCT 52-75 43-69 - -

FIR 74-74 - - -
HAL 43-67 41-61 22-77 19-62

constrained and time-constrained datapath scheduling algorithms based on dynamic frequency

clocking. The use of dynamic frequency clocking could generate enough slack to apply reduced

voltages which in turn saves energy. It is observed that when using two supply voltage levels an

average energy reduction of ¼6�q� and for three supply voltage levels, an average reduction of ¼�Ö��
is obtained for the benchmarks using the RC-DFC algorithm. Similarly, for TC-DFC, an average

energy reduction of ¼�Ö�� (for �����1GY� ��) and ÖDR�� (for �A�Ô"¶GY� ��) are obtained. The processor con-

figurations for various benchmark circuits that would result minimum energy-delay-product were

determined through experiments. The integration of such a scheduler into a low power datapath

synthesis tool will significantly benefit low power processor design especially for data intensive

applications.

97

www.manaraa.com

CHAPTER 4

ENERGY DELAY PRODUCT MINIMIZATION

In this chapter, we describe an integer linear programming (ILP) based datapath scheduling al-

gorithm which incorporates multiple supply voltages and dynamic frequency clocking (MVDFC)

for energy reduction [64]. The scheduling technique assumes the number and type of different

functional units as resource constraints and minimizes the energy delay product (EDP). The en-

ergy savings is from the use of multiple supply voltages while the performance improvement from

dynamic frequency clocking. Further, we consider the simultaneous use of multiple supply volt-

ages and multicyling (MVMC) to achieve reduction in energy and energy delay product. Both the

MVDFC and MVMC based schemes have been applied to various high level synthesis benchmark

circuits under different resource constraints. The experimental results show appreciable reductions

in both energy and energy delay product.

This chapter is organized as follows. We first outline the related works proposed in the lit-

erature. Then we provide the ILP-formulations to minimize the energy delay product. The next

section discusses the ILP-based scheduler, followed by experimental results.

4.1 Energy Delay Product of a Datapath Circuit

A CMOS circuit can be operated in different modes, namely, single supply voltage and single

frequency, multiple supply voltages and single frequency, and multiple supply voltages and dy-

namic frequency. Traditionally, CMOS circuits are operated in the single supply voltage and single

frequency mode, in which, during each cycle the clock width is dictated by the slowest operator

delay and each functional unit is operated at equal voltage level. In multiple supply voltages and

single frequency mode, different functional units are operated at different voltage levels to reduce

energy consumption [65, 51, 89]. In this case, energy consumption of the level converters is to be

98

www.manaraa.com

taken into account. More recently, multiple supply voltages and dynamic frequency clocking mode

of operation is being explored as a possible strategy for low power high performance operation. In

dynamic frequency clocking, the clock frequency is varied on-the-fly based on the functional unit

active in that cycle. In this scheme, all the units are clocked by single clock line which switches

at run time. This scheme, in particular, is suitable for data intensive or compute intensive, DSP

applications. The architecture for dynamic clocking based systems consists of a datapath, a con-

troller and a dynamic clocking unit (DCU). The datapath consists of funtional units with registers

and multiplexors. The controller decides which functional units are active in each control step and

those not active are disabled using a multiplexor. The DCU generates the required clock frequency

usually using clock divider strategy [59, 62] which are submultiples of base frequency. The base

frequency is the maximum frequency (or multiple of maximum) of any functional unit at maxi-

mum supply voltage. The controller has storage units to store a parameter called, ”clock frequency

index” ([55]) for each control step derived during the datapath scheduling. This clock frequency

index parameter serves as the clock dividing factor for the DCU. The cycle frequency is generated

dynamically and the functional units with the appropriate supply voltages are activated. The main

overheads in this scheme are, level converters, the dynamic clocking unit, and some additional stor-

age in the control unit. When a value of ¤ ru¥ � is loaded into the DCU, the DCU provides a divided

output clock frequency, � ¦�§B¨c©� � m ª .

Let us assume that the datapath is represented as a sequencing data flow graph. We use the

notations given in Table 4.1 for developing the following energy and energy delay product for a

datapath. The energy consumption in any cycle ¤ is the energy consumption of all the resources

active in ¤ , which is given as,

; � � : ªm���@ �gmb® � $�mb® � 9 Cmb® � (4.1)

The level converters are considered as resources operating in the control step in which it needs to

step up the signal. The total energy consumption of the whole DFG (or datapath) is the sum of the

99

www.manaraa.com

Table 4.1. Notations used in Description

Ø : total number of operations in the DFG excluding the source and sink nodes (NO-OPs)��m : any operation such that �^Í ¥ Í[Øp : total number of control steps in the DFG¤ : any control step or clock cycle in DFG� � : number of resources active in step ¤r � : cycle frequency for control step ¤��m ® � : switching at resource ¥ used by operation ��m operating in step ¤$�mb® � : load capacitance of resource ¥ used by operation ��m operating in control step ¤96m ® � : operating voltage of resource ¥ used by operation ��m operating in control step ¤; � : energy consumption of all functional units active in cycle ¤;^Ä %i� : energy delay product of all functional units active in cycle ¤� : critical path delay of the DFG; : total energy consumption of the DFG;^Ä % : total energy delay product of the DFGÀ
: subscript used for single supply voltage and single frequency operationÄ : subscript used for miltiple supply voltage and dynamic frequency operation* : subscript used for miltiple supply voltage and multicycling operationr � C : operating clock frequency for single frequncy or multicycling opeartions

energy consumption for all cycles as given in Eqn. 4.2 below.

; � �ji� ��@ ; � � i� ��@ � : ªmE��@ ��mb® � $�m ® � 9 Cmb® � (4.2)

The dynamic clocking unit (DCU) is responsible for generating dynamic clock is considered as a

resource operating in all the control steps. The energy consumptions of the DCU is to be added

alongwith Eqn. 4.2, but need not be considered for minimization.

The critical path delay of the DFG is given by the summation of the inverse of the clock fre-

quencies.

� � � i� ��@ r � (4.3)

100

www.manaraa.com

The total energy delay product can be calculated as the product of the total energy consumption

and the critical path delay as shown in the following equation.

;1ÄY% � ; � 	�� � Ý � i� ��@ � : ªmE��@ ��mb® � $�m ® � 9 Cmb® � ß 	Ç� i� ��@ r � (4.4)

This should be the objective function for the scheduling algorithm for minimization.

We are aiming at minimizing both the voltage and frequency. Since the objective function

involves the product of the two variables, and is a non-linear function, we can not use integer linear

programming (ILP) for its minimization. Hence, in stead of finding the energy consumption for

each cycle ¤ as in Eqn. 4.1, we derive the energy delay product for each cycle.

;1ÄY% � ° ª� ª íyx ªï�ð#ñ ï� ª � ï� ª �{zï� ª� ª (4.5)

The total energy delay product of the DFG is the sum of above ;^Ä %�� for all control steps which

is given as follows. ;^Ä % � �ji� ��@ ;^Ä % � �ji� ��@ í x ªï�ð�ñ ï� ª � ï� ª �azï� ª� ª � i� ��@ � : ªm���@ ï� ª � ï� ª � zï� ª� ª
(4.6)

For single voltage and single frequency mode of operation, 9�mb® � and r � are the same for any

clock cycle (¤) and any operation (¥). However, for multiple supply voltage and multicycling op-

eration, r � is the same for all control steps and let us denote it as r � C . Following the same steps

as above the total energy delay product of the DFG for multiple supply voltage and multicycling

operation is given by the following equation.

;1ÄY% O � i� ��@ ;1ÄY% � �ji� ��@ í x ªï�ð#ñ ï� ª � ï� ª � zï� ª� ª � � � i� ��@ � : ªmE��@ ï� ª � ï� ª �{zï� ª� ª � � (4.7)

101

www.manaraa.com

4.2 ILP Formulations

In this section, we discuss the ILP formulations to minimize the peak and average power con-

sumption of a datapath circuit. We first discuss the formulations for multiple supply voltages and

dynamic clocking based system followed by multiple supply voltages and multicycling based sys-

tem. In order to formulate an ILP based model for the objective function and the scheduling scheme

for the DFG, the notations given in Table 4.2 are required.

Table 4.2. Notations used in ILP Formulations& ¯® � : functional unit of type � operating at voltage level >* ¯® � : maximum number of functional units of type � operating at voltage level >À m : as soon as possible (ASAP) time stamp for the operation ��m;�m : as late as possible (ALAP) time stamp for the operation ��m;^Ä %Ñ. ¥ :B>v: r 0 : energy delay product of functional unit used by operation �Am
operating at voltage level > and frequency rÏ mb® � ® � ® � : decision variable which takes the value of �
if operation ��m is scheduled in control step ¤
using the functional unit & ¯® � and ¤ has frequency r �8 mb® � ® C ® l : decision variable which takes the value of � if ��m is using the functional unit& ¯® � and scheduled in control steps Ù � á� mb® � : latency for operation �Dm using resource operating at voltage >
(in terms of number of clock cycles)

4.2.1 ILP Formulations : Dynamic Frequency Clocking

First, we derive the ILP formulation for the objective function given in Eqn. 4.6 for multiple

supply voltages and dynamic clocking frequency.

Objective Function : The objective function minimizes the total energy delay product of the entire

DFG. Using the decision variable Ï mb® � ® � ® � , we write the objective function as follows.

* ¥ � ¥ á ¥ �EL L ;^Ä % �* ¥ � ¥ á ¥ �EL L � � � m � � � � � � Ï mb® � ® � ® � 	�;1ÄY%Y. ¥ :B>�: r 0 (4.8)

102

www.manaraa.com

Uniqueness Constraints : These constraints ensure that each operation �#m is scheduled to an unique

control step within the mobility range (
À m , ;�m) with a particular supply voltage and operating fre-

quency. We represent them as, | ¥ , ��Í ¥ Í p ,

� � � � � � Ï mb® � ® � ® � � (4.9)

Precedence Constraints : These constraints guarantee that for an operation �#m , all its predecessors

are scheduled in earlier control steps and its successors are scheduled in later control steps. These

are modelled as, | ¥ :�0D:<�Dm�1µ%��}L�6 5 � ,
� � � � � ° ïf � ÷ ï 6�	�Ï mb® f ® � ® � d � � � � � ° �� � ÷ � Lt	�Ï üh® � ® � ® � Í d'� (4.10)

Resource Constraints : The resource constraints make sure that no control step contains more than& M q® � operations of type � operating at voltage > . These can be enforced as, |u¤ , ��Í[¤�Í p and |v> ,

� m � � Ï mb® � ® � ® � Í * ¯® � (4.11)

Frequency Constraints : This set ensures that if a functional unit is operating at a higher voltage

level then it can be schduled in a lower frequency control step, whereas, a functional unit operating

at a lower voltage level then it can not be scheduled during a higher frequency control step. We

write these constraints as, | ¥ , �'Í ¥ Í p , |u¤ , �^Íà¤
Í p , if r ¹ > , then Ï mb® � ® � ® � �" .
4.2.2 ILP Formulations : Multicycling

Now, we give the ILP formulation for the objective function given in Eqn. 4.7 for multiple

supply voltages and multicycling operation mode.

Objective Function : The objective is to minimize the energy delay product of the whole DFG

103

www.manaraa.com

over all control steps using multiple supply voltages and multicycling.

* ¥ � ¥ á ¥ �EL L ;^Ä % O* ¥ � ¥ á ¥ �EL L � C � m � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	T;^Ä %Ñ. ¥ :B>v: r � C 0 (4.12)

Uniqueness Constraints : These constraints ensure that each operation �#m is scheduled in the ap-

propriate control step within the mobility range (
À m , ; m) begin assigned the specific supply voltage.

An operation may be operated with more than one clock cycle sometimes depending on the supply

voltage. These constraints are represented as, | ¥ , �'Í ¥ Í?Ø ,

� � � ÷ ï ³�° ï ³ @ ´ n ï� ~C � ÷ ï 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô � (4.13)

When an operation is scheduled at the highest voltage, then it is scheduled in one unique control

step, whereas, when they are to be operated at lower voltages they need more than one clock cycle

for completion. Thus, for lower voltages the mobility is restricted.

Precedence Constraints : These constraints guarantee that for an operation �#m , all its predeces-

sors are scheduled in earlier control steps and its successors are scheduled in later control steps.

These constraints should also take care of the multicycling operations. These are modeled as,| ¥ :�0�:<� m 1µ%��}L�6 5 � ,
� � � ° ïC � ÷ ï . Ù O � mb® � d �q0�	B8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô d � � � ° �C � ÷ � Ù 	H8 üh® � ® C ® ó C ³ n � ~ ´ @ ô Í d'� (4.14)

Resource Constraints : These constraints ensure that each control step contains no more than & ¯® �
operations of type � operating at voltage > . This can be enforced as, |u> and | Ù , �'Í Ù Í p ,

� m � C 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô Í * ¯® � (4.15)

104

www.manaraa.com

4.3 Datapath Scheduling Algorithm

In this section, we discuss the solution for the ILP formulations obtained in the previous section.

The same target architecture and the same characterised datapath components used in [55] are

assumed. The ILP based scheduler attempts to minimize the EDP is outlined in Fig. 4.1. The

first step is to determine the ASAP and ALAP time stamp of each operation. The ASAP time

stamp is the start time and ALAP time stamp is the finish time of each operation. These two

times provide the mobility of a operation and the operation must be scheduled in this mobile range.

Then the scheduler finds the ILP formulations based the models described in Section 4.2. The

scheduler determines the cycle frequencies in step 6, which contribute the smallest frequencies of

all operations scheduled in a particular cycle. Finally, we estimate the energy delay product and

the energy consumptions of the whole DFG.

Step 1 : Determine the ASAP and ALAP schedules of the UDFG.
Step 2 : Determine the mobility graph of each node.
Step 3 : Construct the ILP formulations for the DFG.
Step 4 : Solve the ILP formulations using LP-Solve.
Step 5 : Find the scheduled DFG.
Step 6 : Determine the cycle frequencies.
Step 7 : Find the energy and EDP estimates of the DFG.

Figure 4.1. ILP Based Scheduling for Low EDP

4.3.1 Scheduling for MVDFC

We illustrate the solution for the ILP formulation in the MVDFC case, with the help of the

DFG shown in Fig. 4.2. The ASAP schedule is shown in Fig. 4.2(a) and the ALAP schedule is

shown in Fig. 4.2(b). From the ASAP and ALAP schedules, we obtain the mobility graph as in Fig.

4.2(c). Using this mobility graph, we have the ILP formulations shown in Fig. 4.3 for the resource

constrain (RC2), three multipliers at �A�Ü¼�9 , one ALU at �A�Ü¼�9 , and one ALU operating at
Z � Z 9 . We

solved the formulations using LP-solve and based on the results, we obtained the scheduled DFG

shown is Fig. 4.3(d). In Fig. 4.3, we used the following additional notations, *Wá"! Ù �£� : number of

105

www.manaraa.com

1
*

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

c0

c1

c2

c3

c4

1 2 43 5 6

(a) ASAP Schedule (b) ALAP Schedule

* * * + ++ Source0
NOP

2 3
* *

4

5

7

+

+ +

NOP Sink

2.4V 2.4V

(c) Mobility Graph (d) Final Schedule

2.4V

3.3V

2.4V

2.4V

6

Figure 4.2. Example Data Flow Graph for Multiple Supply Voltages and Dynamic Frequency
Clocking

multipliers at voltage level 1, *+á"! Ù �B� : number of multipliers at voltage level 2, *+ý Ù !�� : number

of ALUs at voltage level 1, and *úý Ù !�� : number of ALUs at voltage level 2.

4.3.2 Scheduling for MVMC

We illustrate the solution for the ILP formulation of the MVMC case, using the DFG shown

in Fig. 4.4. The ASAP schedule is shown in Fig. 4.4(a) and the ALAP schedule is shown in Fig.

4.4(b). From the ASAP and ALAP schedules, we obtain the mobility graph shown in Fig.4.4(c). It

should be noted that this mobility graph is different from that shown in Fig. 4.2(c). In the MVMC

case, the mobility graph considers the multicycle operations. We assume two operating voltage

levels, and when a multiplier is operated at the lower voltage level, it take two clock cycles for

106

www.manaraa.com

/* ILP Formulation for Energy Delay Product Minimization for MVDFC scheme */

/* Objective Function */
min: 106.6 x1111 + 213.2 x1112 + 56.4 x1121 + 112.8 x1122 + 106.6 x1211 + 213.2 x1212

+ 56.4 x1221 + 112.8 x1222 + 106.6 x2111 + 213.2 x2112 + 56.4 x2121 + 112.8 x2122
+ 106.6 x3111 + 213.2 x3112 + 56.4 x3121 + 112.8 x3122 + 106.6 x3211 + 213.2 x3212
+ 56.4 x3221 + 112.8 x3222 + 2.8 x4211 + 5.5 x4212 + 1.5 x4221 + 2.9 x4222 + 2.8 x5211
+ 5.5 x5212 + 1.5 x5221 + 2.9 x5222 + 2.8 x5311 + 5.5 x5312 + 1.5 x5321 + 2.9 x5322
+ 2.8 x6311 + 5.5 x6312 + 1.5 x6321 + 2.9 x6322;

/* Uniqueness Constraints */
x1111 + x1112 + x1121 + x1122 + x1211 + x1212 + x1221 + x1222 = 1;
x2111 + x2112 + x2121 + x2122 = 1;
x3111 + x3112 + x3121 + x3122 + x3211 + x3212 + x3221 + x3222= 1;
x4211 + x4212 + x4221 + x4222 = 1;
x5211 + x5212 + x5221 + x5222 + x5311 + x5312 + x5321 + x5322 = 1;
x6311 + x6312 + x6321 + x6322 = 1;

/* Precedence Constraints */
3 x6311 + 3 x6312 + 3 x6321 + 3 x6322 - 2 x1211 - 2 x1212 - 2 x1221 - 2 x1222 - x1111

- x1112 - x1121 - x1122 � 1;
2 x4211 + 2 x4212 + 2 x4221 + 2 x4222 - x2111 - x2112 - x2121 - x2122 � 1;
3 x6311 + 3 x6312 + 3 x6321 + 3 x6322 - x4211 - x4212 - x4221 - x4222 � 1;
3 x5311 + 3 x5312 + 3 x5321 + 3 x5322 + 2 x5211 + 2 x5212 + 2 x5221 + 2 x5222

- 2 x3211 - 2 x3212 - 2 x3221 - 2 x3222 - x3111 - x3112 - x3121 - x3122 � 1;

/* Resource Constraints */
x1111 + x2111 + x3111 + x1112 + x2112 + x3112 � 0; /* mult1 */
x1121 + x2121 + x3121 + x1122 + x2122 + x3122 � 3; /* mult2 */
x1211 + x3211 + x1212 + x3212 � 0; /* mult1 */
x1221 + x3221 + x1222 + x3222 � 3; /* mult2 */
x4211 + x5211 + x4212 + x5212 � 1; /* alu1 */
x4221 + x5221 + x4222 + x5222 � 1; /* alu2 */
x5311 + x6311 + x5312 + x6312 � 1; /* alu1 */
x5321 + x6321 + x5322 + x6322 � 1; /* alu2 */

/* Frequency Constraints */
x1121 = 0; x1221 = 0; x2121 = 0; x3121 = 0; x3221 = 0; x4221 = 0; x5221 = 0; x5321 = 0; x6321 = 0;

/* Zero-One Type Cast */
INT x1111, x1112, x1121, x1122, x1211, x1212, x1221, x1222, x2111, x2112, x2121, x2122, x3111,

x3112, x3121, x3122, x3211, x3212, x3221, x3222, x4211, x4212, x4221, x4222, x5211,
x5212, x5221, x5222, x5311, x5312, x5321, x5322, x6311, x6312, x6321, x6322;

Figure 4.3. ILP Formulation for Example DFG for Multiple Supply Voltages and Dynamic Fre-
quency Clocking

107

www.manaraa.com

**

+

+
6

*

+
4

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

(b) ALAP Schedule(a) ASAP Schedule

* * * + + +
1 2 3 4 5 6

NOP

(d) Final Schedule(c) Mobility Graph

NOP

Source0

7 Sink

c1

c2

c3

c4

c5

c0

1 3

5

3.3V

2.4V2.4V2.4V

2.4V

2

2.4V

Figure 4.4. Example DFG (for RC2) (MVMC)

completing the operation. For the characterised cells used in our experiment [55], the operating

clock frequency, r � C is SD*+ã�� . Using this mobility graph, we have the ILP formulations shown

in Fig. 4.3 for the resource constrain (RC2), three multipliers at �A�Ü¼�9 , one ALU at �A�Ü¼�9 , and one

ALU operating at
Z � Z 9 . We solved the formulation using LP-solve and based on the results we

obtained the scheduled DFG shown is Fig. 4.2(d). In Fig. 4.5, the notations, such as, *+á"! Ù �¿� ,*+á"! Ù �}� , *úý Ù !i� and *úý Ù !u� are the same as those used in the case of the MVDFC.

108

www.manaraa.com

/* ILP Formulation for Energy Delay Product Minimization for MVMC scheme */

/* Objective Function */
min: 106.6 x1111 + 106.6 x1122 + 106.6 x1133 + 56.4 x1212 + 56.4 x1223 + 106.6 x2111

+ 106.6 x2122 + 56.4 x2212 + 106.6 x3111 + 106.6 x3122 + 106.6 x3133 + 56.4 x3212
+ 56.4 x3223 + 2.8 x4122 + 2.8 x4133 + 1.5 x4222 + 1.5 x4233 + 2.8 x5122 + 2.8 x5133 + 2.8 x5144
+ 1.5 x5222 + 1.5 x5233 + 1.5 x5244 + 2.8 x6133 + 2.8 x6144 + 1.5 x6233 + 1.5 x6244;

/*Uniqueness Constraints*/
x1111 + x1122 + x1133 + x1212 + x1223 = 1;
x2111 + x2122 + x2212 = 1;
x3111 + x3122 + x3133 + x3212 + x3223 = 1;
x4122 + x4133 + x4222 + x4233 = 1;
x5122 + x5133 + x5144 + x5222 + x5233 + x5244 = 1;
x6133 + x6144 + x6233 + x6244 = 1;

/* Resource Constraints */
x1111 + x2111 + x3111 � 0; /* Mmult1 */
x1212 + x2212 + x3212 � 3; /* Mmult2 */
x1122 + x2122 + x3122 � 0; /* Mmult1 */
x1212 + x1223 + x2212 + x3212 + x3223 � 3; /* Mmult2 */
x1133 + x3133 � 0; /* Mmult1 */
x1223 + x3223 � 3; /* Mmult2 */
x4122 + x5122 � 1; /* Malu1 */
x4222 + x5222 � 1; /* Malu2 */
x4133 + x5133 + x6133 � 1; /* Malu1 */
x4233 + x5233 + x6233 � 1; /* Malu2 */
x5144 + x6144 � 1; /* Malu1 */
x5244 + x6244 � 1; /* Malu2 */

/* Precedence Constraints */
4 x6144 + 4 x6244 + 3 x6133 + 3 x6233 - 3 x1133 - 3 x1223 - 2 x1122 - 2 x1212 - x1111 � 1;
4 x6144 + 4 x6244 + 3 x6133 + 3 x6233 - 3 x4133 - 3 x4233 - 2 x4122 - 2 x4222 � 1;
3 x4133 + 3 x4233 + 2 x4122 + 2 x4222 - 2 x2122 - 2 x2212 - x2111 � 1;
4 x5144 + 4 x5244 + 3 x5133 + 3 x5233 + 2 x5122 + 2 x5222 - 3 x3133

- 3 x3223 - 2 x3122 - 2 x3212 - x3111 � 1;

/* Integer Constraints */
INT x1111, x1122, x1133, x1212, x1223, x2111, x2122, x2212, x3111, x3122, x3133,

x3212, x3223, x4122, x4133, x4222, x4233, x5122, x5133, x5144, x5222, x5233,
x5244, x6133, x6144, x6233, x6244;

Figure 4.5. ILP Formulation for Example DFG for Multiple Supply Voltages and Multicycling

109

www.manaraa.com

4.4 Experimental Results

We tested the ILP scheduler with selected benchmark circuits, such as, (1) Example circuit, (2)

FIR filter, (3) IIR filter, (4) HAL differential equation solver and (5) Auto regressive filter. The

functional units (FUs) assumed are ALUs and MULTs. The datapath cells and their characteriza-

tion are considered from [55]. The following notations are used to express results :

3 ; ÷ , ; O and ; � represent the total energy consumption (in ä�Å) for single supply voltage,

MVDFC and MVMC operations respectively.

3 ;1ÄY% ÷ , ;^Ä % O and ;^Ä % � are the energy-delay-products (in �4" ´ @�r Å¸dæÁ) for single sup-

ply voltage and single frequency, for multiple supply voltage and single frequency and for

multiple supply voltage and dynamic clocking operations, respectively.

3 Rhe percentage energy savings is calculated as, sV; O ó °ut ´ ° � ô° t 	Y�4"D" and s¶; � ó ° t ´ ° v ô° t 	��4"D" .
3 The percentage EDP reduction sV;^Ä % O is calculated as, sV;^Ä % O ó ° �
 t ´ ° �
 � ô° �
 t 	��4"D"

and s¶;^Ä % � ó ° �
 t ´ ° �
 v ô° �
 t 	��4"D" .
The datapath scheduling algorithms were tested using the different sets of resource constraints

listed below.

(RC1) multipliers (� at �A�Ü¼�9 and � at
Z � Z 9) and ALUs (� at �A�Ü¼�9 and � at

Z � Z 9)

(RC2) multipliers (
Z

at �A�Ü¼�9) and ALUs (� at �A�Ü¼�9 and � at
Z � Z 9)

(RC3) multipliers (� at �A�Ü¼�9) and ALUs (� at
Z � Z 9)

(RC4) multipliers (� at �A�Ü¼�9) and ALUs (� at
Z � Z 9)

The experimental results for various benchmark circuits are reported in Table 4.3. Fig. 4.6 shows

the results for the various benchmarks averaged over different resource constraints. The energy

estimation includes the energy consumption of the overheads. The results reported are based on

the assumption of two supply voltages and switching activity of "#��� . The energy savings for the

proposed algorithm is listed alongwith other multiple voltage scheduling algorithms in Table 4.4.

110

www.manaraa.com

Ta
bl

e
4.

3.
E

ne
rg

y
an

d
E

D
P

E
st

im
at

es
fo

r
B

en
ch

m
ar

ks
fo

r
M

V
D

F
C

an
d

M
V

M
C

S
ch

em
es

R
E

ne
rg

y
E

st
im

at
es

(

��)
E

ne
rg

y
D

el
ay

P
ro

du
ct

s
(

�� ��� ���
)

C

���
���
���
� � �
� � �
��� �
��� �
��� �
� ��� �
� ��� �

1
2

3
4

5
6

7
8

9
10

11
12

(1
)

1
29

55
20

13
15

72
31

.9
46

.8
98

5.
0

89
4.

7
87

3.
3

9.
2

11
.3

E
2

29
55

15
72

15
72

46
.8

46
.8

98
5.

0
69

8.
7

69
8.

7
29

.1
29

.1
X

3
29

55
15

96
15

96
46

.0
46

.0
98

5.
0

88
6.

7
79

8.
0

10
.0

19
.0

P
4

29
55

15
96

15
96

46
.0

46
.0

13
13

.3
88

6.
7

88
6.

7
32

.5
32

.5
A

ve
ra

ge
R

ed
uc

tio
n

42
.7

46
.4

20
.2

23
.0

(2
)

1
49

00
30

40
25

87
38

.0
47

.2
27

22
.2

20
26

.7
22

99
.6

25
.6

15
.5

F
2

49
00

25
87

25
87

47
.2

47
.2

27
22

.2
17

24
.7

20
12

.1
36

.6
26

.1
I

3
49

00
26

35
26

35
46

.2
46

.2
27

22
.2

20
49

.4
20

49
.4

24
.7

24
.7

R
4

49
00

26
35

26
35

46
.2

46
.2

27
22

.2
20

49
.4

20
49

.4
24

.7
24

.7
A

ve
ra

ge
R

ed
uc

tio
n

44
.4

46
.7

27
.9

22
.8

(3
)

1
49

00
39

58
30

52
19

.2
37

.7
21

77
.8

21
98

.8
23

73
.8

N
A

N
A

I
2

49
00

25
87

25
49

47
.2

47
.0

21
77

.8
17

24
.7

20
21

.4
20

.8
7.

2
I

3
49

00
26

35
26

35
46

.2
46

.2
27

22
.2

23
42

.2
20

49
.4

14
.0

24
.7

R
4

49
00

26
35

26
35

46
.2

46
.2

27
22

.2
23

42
.2

20
49

.4
14

.0
24

.7
A

ve
ra

ge
R

ed
uc

tio
n

39
.7

44
.3

12
.2

18
.9

(4
)

1
58

85
40

13
31

19
31

.8
47

.0
26

15
.6

26
75

.3
24

25
.9

N
A

7.
3

H
2

58
85

31
19

31
07

47
.0

47
.2

26
15

.6
20

79
.3

20
71

.3
20

.5
20

.8
A

3
58

85
31

67
31

67
46

.2
46

.2
26

15
.6

24
63

.2
22

87
.3

5.
8

12
.5

L
4

58
85

31
67

31
67

46
.2

46
.2

32
69

.4
33

19
.3

24
63

.2
N

A
24

.7
A

ve
ra

ge
R

ed
uc

tio
n

42
.8

46
.6

6.
6

16
.3

(5
)

1
50

00
26

39
26

39
47

.2
47

.2
55

55
.6

38
11

.8
43

98
.3

31
.4

20
.8

A
2

50
00

26
39

26
39

47
.2

47
.2

55
55

.6
38

11
.8

43
98

.3
31

.4
20

.8
R

3
50

00
27

35
27

35
45

.3
45

.3
55

55
.6

68
39

.4
37

98
.6

N
A

31
.6

F
4

50
00

27
35

27
35

45
.3

45
.3

55
55

.6
68

39
.4

37
98

.6
N

A
31

.6
A

ve
ra

ge
R

ed
uc

tio
n

46
.3

46
.3

15
.7

26
.2

O
ve

ra
ll

A
ve

ra
ge

R
ed

uc
tio

n
43

.2
46

.1
16

.5
21

.4

111

www.manaraa.com

1 2 3 4 5
0

10

20

30

40

50

Different Benchmark Circuits −>

E
ne

rg
y

R
ed

uc
tio

n
(

A
vg

 %
)

 −
> MVDFC

1 2 3 4 5
0

5

10

15

20

25

30

Different Benchmark Circuits −>

E
D

P
 R

ed
uc

tio
n

(
A

vg
 %

)
 −

> MVDFC

1 2 3 4 5
0

10

20

30

40

50

Different Benchmark Circuits −>

E
ne

rg
y

R
ed

uc
tio

n
(

A
vg

 %
)

 −
>

MVMC

1 2 3 4 5
0

5

10

15

20

25

30

Different Benchmark Circuits −>

E
D

P
 R

ed
uc

tio
n

(
A

vg
 %

)
 −

> MVMC

Figure 4.6. Reduction for Different Benchmarks Expressed as Percentage in Average

From the table, we observe that both the energy and the energy delay product are reduced consid-

erably for both MVDFC and MVMC schemes. The MVDFC scheme results in better savings than

due to that of the MVMC scheme for most of the cases, except the FIR benchmark. The energy sav-

ings of both the MVDFC and MVMC schemes are the same for most cases except for few resource

constraints. The savings would have been same for both the schemes on using energy as objective

function, as the energy savings is due to the voltage reduction, not due to the dynamic frequency

clocking or multicycling. However, use of energy as objective function would have increased the

energy delay product, thus reducing the performance.

112

www.manaraa.com

Table 4.4. Savings for Various Schedulings Schemes

Bench- % Average energy savings
mark This work Shiue Sarrafzadeh Johnson Chang Mohanty

Circuits DFC MC [95] [90] [65] [51] [55]

(2)fir 47 44 - 23 53 - 46
(3)iir 44 40 - - 36 - -
(4)hal 47 43 24 - - 36 40
(5)arf 46 46 12 18 39 29 39

4.5 Conclusions

Our aim is to use frequency scaling concepts for energy-efficient high-performance ASIC de-

sign. The energy reduction is achieved through the use of voltage reduction and high-performance

by using DFC. This chapter introduced a ILP based resource-constrained datapath scheduling al-

gorithm using both multiple supply voltages and dynamic frequency clocking. It is observed that

using two supply voltage levels, an average energy reduction of ¼�Ö�� and an average EDP reduction

of �#�q� is obtained using MVDFC. Whereas, for MVMC scheme an average energy reduction of¼ Z � and average EDP reduction of �7Ö�� is obtained. If in the critical path there are proportionate

number of multipliers and ALUs such that the net performance degradation due to the low fre-

quency operation of multipliers can be overcome by high frequency operation of ALUs then the

reduction was significant. With such a scheduler incorporated into a low-power datapath synthesis

tool will greatly benefit low power processor design especially for compute intensive applications.

113

www.manaraa.com

CHAPTER 5

PEAK POWER AND AVERAGE POWER MINIMIZATION

The use of multiple supply voltages for energy and average power reduction is well researched

and several works have appeared in the literature. However, in low power design for deep sub-

micron and nanometer regimes, the peak power, peak power differential, average power and total

energy are equally critical design constraints. In this work, we propose datapath scheduling algo-

rithms for simultaneous minimization of peak and average power [46]. The minimization schemes

based on integer linear programming (ILP) are developed for the design of datapaths that can func-

tion in three modes of operation: (1) single supply voltage and single frequency (SVSF), (2) mul-

tiple supply voltages and dynamic frequency clocking (MVDFC) and (3) multiple supply voltages

and multicycling (MVMC). The use of dynamic frequency clocking is effective for power reduc-

tion in design of data intensive signal processing applications. The effectiveness of our proposed

technique is measured by estimating the peak power consumption, the average power consump-

tion and the power delay product of the datapath circuits. Various experiments are conducted on

selected high-level synthesis benchmark circuits under different resource constraints.

This chapter is organized as follows. The ILP-formulations to minimize the peak and average

power consumption are described first. The ILP-based scheduler is then introduced, followed by

experimental results. We also investigated the scheduling schemes for only peak power minimza-

tion without considering average power, which is represented in the last section.

5.1 Peak and Average Power Consumption of a Datapath Circuit

In this section, we first mention the different notations and terminology needed for a scheduling

model. Let us assume that the datapath is represented in the form of a sequencing data flow graph.

The datapath uses various resources or functional units operating at different supply voltages. The

114

www.manaraa.com

level converters are considered as resource overheads often needed when the voltage level needs to

be stepped up in any control step. The dynamic clocking unit (DCU) that generates the different

frequency levels is also accounted as a resource that will operate during all the control steps. The

notation and terminolgies are given in Table 5.1. It may be noted that for single frequency and

single supply voltage mode of operation, 9�mb® � and r � are the same for any clock cycle (¤) and

resource (¥). Similarly, for multicycling operation r � is the same for any clock cycle (¤).
Table 5.1. Notations used in Description¤ : any control step or clock cycle in DFGp : total number of control steps in the DFG� � : number of resources active in step ¤r � : cycle frequency for control step ¤��mb® � : switching at resource ¥ operating in step ¤$�mb® � : load capacitance of resource ¥ operating in control step ¤96mb® � : operating voltage of resource ¥ operating in control step ¤% � : power consumption for the DFG for any control step ¤%u : maximum power consumption for the DFG%ik : average power consumption for the DFG� : critical path delay of the DFG%'Ä % : power delay product of the DFG

The power consumption for any control step ¤ is

% � � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � (5.1)

The peak power consumption of the DFG is the maximum power consumption over all the control

steps which is expressed as below.

% *úý�Ï � % � � & � ��@B® C£®�������� i (5.2)

We rewrite Eqn. 5.2 using Eqn. 5.1 as follows.

% *+ý�Ï Ý � : ªm���@ ��mb® � $�mb® � 9 Cmb® � r � ß & � ��@B® C£®�������� i (5.3)

115

www.manaraa.com

The average power consumption of the DFG is characterised as the mean of the cycle powers (% �)
for all control steps.

%ik @i � im���@ % � (5.4)

Again using Eqn. 5.1, we rewrite Eqn. 5.4 as follows.

%�k @i �jim���@ � : ªmE��@ ��mb® � $�m ® � 9 Cmb® � r � (5.5)

Since the simultaneous reduction of both peak and average power is aimed for, the objective func-

tion to be minimized by the scheduling algorithm is the sum of Eqn. 5.3 and 5.5.

The critical path delay of the DFG can be calculated as,

� �jim���@ @� ª (5.6)

It should be noted that the r � is the same for single frequency and multicycling operations for all

values of ¤ and may be different for dynamic frequency clocking operations. The power delay

product of the DFG is defined as the product of the average power consumption and critical path

delay as shown below.

%'Ä % %ik�	�� (5.7)

Using Eqns. 5.4 and 5.6, the following expression for the power delay product is obtained.

%'Ä % @i �jim���@ % � 	t�jim���@ @� ª (5.8)

Similarly, the following expression for the power delay product is arrived using Eqns. 5.5 and 5.6.

%^ÄY% @i � imE��@ � : ªmE��@ ��mb® � $�m ® � 9 Cmb® � r � 	o� imE��@ @� ª (5.9)

To study the impact of the scheduling algorithms on the performance of the datapath the power

delay product of the scheduled DFGs using the above expression will be estimated.

116

www.manaraa.com

5.2 ILP Formulations

In this section, we discuss the ILP formulations to minimize the peak and average power con-

sumption of a datapath circuit. We first discuss the formulations for multiple supply voltages and

dynamic clocking based system followed by multiple supply voltages and multicycling based sys-

tem.

5.2.1 ILP Formulations for DFC

In this section, the ILP formulation for simultaneous peak (Eqn. 5.3) and average power (Eqn.

5.5) minimization using multiple supply voltages and dynamic frequency clocking (DFC) is de-

scribed. In dynamic frequency clocking [62, 63], the clock frequency is varied on-the-fly based

on the functional units active in that cycle. In this clocking scheme, all the units are clocked by

a single clock line which switches at run-time. The frequency reduction creates an opportunity to

operate the different functional units at different voltages, which in turn, helps in further reduction

of power. The notations used for ILP formulations are given in Table 5.2.

Table 5.2. Notations used in ILP FormulationsØ : total number of operations in the DFG excluding the source and sink nodes��m : any operation ¥ , �'Í ¥ Í¬Ø& ¯® � : functional unit of type � operating at voltage level >* ¯® � : maximum number of functional units of type � operating at voltage level >À m : as soon as possible (ASAP) time stamp for the operation ��m; m : as late as possible (ALAP) time stamp for the operation � m%Ñ. ¥ :B>v: r 0 : power consumption of operation ��m at voltage level > and operating frequency rÏ mb® � ® � ® � : decision variable which takes the value of � if operation ��m is scheduled
in control step ¤ using the functional unit & ¯® � and ¤ has frequency r �8 mb® � ® C ® l : decision variable which takes the value of � if ��m is using the functional unit & ¯® �
and scheduled in control steps Ù � á� mb® � : latency for operation �Dm using resource operating at voltage >
(in terms of number of clock cycles)

Objective Function : The objective is to minimize the peak power and the average power consump-

tion of the whole DFG over all control steps simultaneously. These are already described above in

117

www.manaraa.com

Eqn. 5.3 and 5.5.

* ¥ � ¥ á ¥ �EL L %v�O % k (5.10)

Using decision variables the objective function can be rewritten as follows :

* ¥ � ¥ á ¥ �UL L %v�O @i � � � � � m),�D � ~ � � Ï mb® � ® � ® � 	T%Ñ. ¥ :B>�: r 0 (5.11)

It should be noted that the % is unknown and has to be minimized. It may be power consumption

of any control step in the DFG depending on the scheduled operations and hence is later used as a

constraint.

Uniqueness Constraints : These constraints ensure that each operation �Am is scheduled to one

unique control step within the mobility range (
À m , ; m) with a particular supply voltage and operat-

ing frequency. They are represented as, | ¥ , �'Í ¥ Í?Ø ,

� � � � � � Ï mb® � ® � ® � � (5.12)

Precedence Constraints : These constraints ascertain that for an operation �#m , all its predecessors

are scheduled in an earlier control step and its successors are scheduled in an later control step.

These are modelled as, | ¥ :�0D:<�Dm�1e%��}L�6 5 �
� � � � � ° ïf � ÷ ï 6^	TÏ m ® f ® � ® � d!� � � � � ° �� � ÷ � LÇ	TÏ üh® � ® � ® � Í d'� (5.13)

Resource Constraints : These constraints establish that no control step contains more than & ¯® �
operations of type � operating at voltage > . These can be enforced as, |u¤ , ��Í[¤�Í p and |u> ,

� m),�D � ~ � � Ï mb® � ® � ® � Í * ¯® � (5.14)

Frequency Constraints : This set ensures that if a functional unit is operating at higher voltage level

then it can be scheduled in a lower frequency control step, whereas if a functional unit is operating

118

www.manaraa.com

at lower voltage level then it can not be scheduled in a higher frequency control step. These con-

straints are written as, | ¥ , �'Í ¥ Í¬Ø , |u¤ , ��Í[¤�Í p , if r ¹ > , then Ï m ® � ® � ® � �" .
Peak Power Constraints : These constraints make certain that the maximum power consumption

of the DFG does not exceed % for any control step. These constraints are applied as follows, |u¤ ,�'Íà¤
Í p and |v> ,

� m),�D � ~ � � Ï mb® � ® � ® � 	T%Ñ. ¥ :B>v: r 0 Í % (5.15)

5.2.2 ILP Formulations for Multicycling

In this section, the ILP formulations for simultaneous minimization of both peak and average

power consumption of the DFG using multiple supply voltages and multicycling will be discussed.

Objective Function : The objective is to minimize the peak and average power consumption of

the whole DFG over all control steps. The expressions given in Eqn. 5.3 and Eqn. 5.5 are still valid

here, with only difference being that r � is the same for all control steps.

* ¥ � ¥ á ¥ �EL L %v�O % k (5.16)

In terms of decision variables, the above is written as :

* ¥ � ¥ á ¥ �UL L % O @i � C � m-,�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	T%Ñ. ¥ :B>�: r � C 0 (5.17)

The % is used as a constraint later.

Uniqueness Constraints : These constraints confirm that every operation �#m is scheduled in ap-

propriate control steps within the mobility range (
À m , ; m) with a particular supply voltage. It may

be operated at more than one clock cycle depending on the supply voltage. These constraints are

119

www.manaraa.com

represented as, | ¥ , �^Í ¥ Í¬Ø ,

� � � ÷ ï ³�° ï ³ @ ´ n ï� ~C � ÷ ï 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô � (5.18)

When the operators are operating at highest voltage, they are scheduled in one unique control step,

whereas, when they are to be operated at lower voltages they need more than one clock cycle for

completion. Thus, for lower voltage the mobility is restricted.

Precedence Constraints : These constraints guarantee that for an operation � m , all its predeces-

sors are scheduled in an earlier control step and its successors are scheduled in an later control

step. These constraints should also take care of the multicycling operations. These are modeled as,| ¥ :�0�:<��m�1µ%��}L�6 5 � ,
� � � ° ïC � ÷ ï . Ù O � mb® � d �q0�	B8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô d!� � � ° �C � ÷ � Ù 	H8 üh® � ® C ® ó C ³ n � ~ ´ @ ô Í d'� (5.19)

Resource Constraints : These constraints make sure that no control step contains more than & ¯® �
operations of type � operating at voltage > . These can be enforced as, |v> and | Ù , �'Í Ù Í p ,

� m),�D � ~ � C 8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô Í * ¯® � (5.20)

Peak Power Constraints : These constraints ensure that the maximum power consumption of

the DFG does not exceed % for any control step. These constraints are enforced as follows, | Ù ,�'Í Ù Í p ,

� m),�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	�%Ñ. ¥ :B>�: r � C 0 Í % (5.21)

5.3 ILP-Based Scheduler

In this section, we discuss the solutions for the ILP formulations obtained in the previous

section. We assume the same target architecture and the characterised datapath components as

120

www.manaraa.com

used in [55]. In this architecture, level converters are used when a low-voltage functional unit

drives a high-voltage functional unit [65]. Peak power consumption of the DFG is minimized by

the ILP based scheduler outlined in Fig. 5.1. The first step is to determine the as soon as possible

(ASAP) time stamp of each operation. The second step is the determination of the as late as possible

(ALAP) time stamp of each vertex for the DFG. The ASAP time stamp is the start time and the

ALAP time stamp is the finish time of each operation. These two times provide the mobility of an

operation and the operation must be scheduled in this mobile range. This mobility graph needs to

be modified for the multicycling scheme. The scheduler is based on the ILP formulations described

in Section 5.2. At this point, the operating frequency of a functional unit is assumed as the inverse

of its operational delay determined using the delay model given in [48]. The ILP formulations

are solved to derive the scheduled DFG. The scheduler decides the cycle frequencies based on the

formulas given in [48]. Finally, the power consumption of the scheduled DFG is estimated.

Step 1 : Find ASAP schedule of the UDFG.
Step 2 : Find ALAP schedule of the UDFG.
Step 3 : Determine the mobility graph of each node.
Step 4 : Modify the mobility graph for multicycling.
Step 5 : Construct the ILP formulations.
Step 6 : Solve the ILP formulations using LP-Solve.
Step 7 : Find the scheduled DFG.
Step 8 : Determine the cycle frequencies for DFC scheme.
Step 9 : Estimate the power consumptions of the DFG.

Figure 5.1. ILP-Based Scheduler

5.3.1 Scheduler using Multiple Voltages and Dynamic Frequency Clocking

The intermediate steps in the solution for the ILP formulations for the multiple supply volt-

ages and dynamic frequency clocking is illustrated using the DFG shown in Fig. 5.2. The ASAP

schedule is shown in Fig. 5.2(a) and the ALAP schedule is shown in Fig. 5.2(b). From the ASAP

and ALAP schedules the mobility graph shown in Fig. 5.2(c) is determined. We have shown one

such ILP formulations in Fig. 5.3 for the resource constraint (RC3), two multipliers at �A�Ü¼�9 and

two ALU operating at
Z � Z 9 using switching activity of "#��� . In Fig. 5.3, we used the following

121

www.manaraa.com

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

(a) ASAP Schedule

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

(b) ALAP Schedule

1 2 43 5 6
* * * + ++

(c) Mobility Graph

NOPSource

NOPSink

2 3

4

6 5

* *

7

0

+

+ +

2.4V 2.4V

*
1

2.4V 3.3V

3.3V 3.3V

(d) Final Schedule

Figure 5.2. Example DFG for Resource Constraint RC3; using Multiple Supply Voltages and Dy-
namic Frequency Clocking

122

www.manaraa.com

/* ILP Formulation for Simultaneous Peak and Average Power Minimization for MVDFC scheme */

/* Objective function */
min : 2.89 x1111 + 1.44 x1112 + 1.52 x1121 + 0.76 x1122 + 2.89 x2111 + 1.44 x2112
+ 1.52 x2121 + 0.76 x2122 + 2.89 x3111 + 1.44 x3112 + 1.52 x3121 + 0.76 x3122
+ 2.89 x1211 + 1.44 x1212 + 1.52 x1221 + 0.76 x1222 + 2.89 x3211 + 1.44 x3212
+ 1.52 x3221 + 0.76 x3222 + 0.08 x4211 + 0.04 x4212 + 0.04 x4221 + 0.02 x4222
+ 0.08 x5211 + 0.04 x5212 + 0.04 x5221 + 0.02 x5222 + 0.08 x5311 + 0.04 x5312
+ 0.04 x5321 + 0.02 x5322 + 0.08 x6311 + 0.04 x6312 + 0.04 x6321 + 0.02 x6322 + PP;
/* Uniqueness Constraints */
x1111 + x1112 + x1121 + x1122 + x1211 + x1212 + x1221 + x1222 = 1;
x2111 + x2112 + x2121 + x2122 = 1;
x3111 + x3112 + x3121 + x3122 + x3211 + x3212 + x3221 + x3222 = 1;
x4211 + x4212 + x4221 + x4222 = 1;
x5211 + x5212 + x5221 + x5222 + x5311 + x5312 + x5321 + x5322 = 1;
x6311 + x6312 + x6321 + x6322 = 1;
/* Precedence Constraints */
3 x6311 + 3 x6312 + 3 x6321 + 3 x6322 - 2 x1211 - 2 x1212 - 2 x1221 - 2 x1222

- x1111 - x1112 - x1121 - x1122 � 1;
2 x4211 + 2 x4212 + 2 x4221 + 2 x4222 - x2111 - x2112 - x2121 - x2122 � 1;
3 x6311 + 3 x6312 + 3 x6321 + 3 x6322 - 2 x4211 - 2 x4212 - 2 x4221 - 2 x4222 � 1;
3 x5311 + 3 x5312 + 3 x5321 + 3 x5322 + 2 x5211 + 2 x5212 + 2 x5221 + 2 x5222

- 2 x3211 - 2 x3212 - 2 x3221 - 2 x3222 - x3111 - x3112 - x3121 - x3122 � 1;
/* Resource Constraints */
x1111 + x2111 + x3111 + x1112 + x2112 + x3112 � 0; /* Mmult1 */
x1121 + x2121 + x3121 + x1122 + x2122 + x3122 � 2; /* Mmult2 */
x1211 + x3211 + x1212 + x3212 � 0; /* Mmult1 */
x1221 + x3221 + x1222 + x3222 � 2; /* Mmult2 */
x4211 + x5211 + x4212 + x5212 � 2; /* Malu1 */
x4221 + x5221 + x4222 + x5222 � 0; /* Malu2 */
x5311 + x6311 + x5312 + x6312 � 2; /* Malu1 */
x5321 + x6321 + x5322 + x6322 � 0; /* Malu2 */
/* Frequency Constraints */
x1121 = 0; x1221 = 0; x2121 = 0; x3121 = 0; x3221 = 0; x4221 = 0; x5221 = 0; x5321 = 0; x6321 = 0;
/* Peak Power Constraints */
8.64 x1111 + 4.32 x1112 + 4.56 x1121 + 2.28 x1122 + 8.64 x2111 + 4.32 x2112 + 4.56 x2121

+ 2.28 x2122 + 8.64 x3111 + 4.32 x3112 + 4.56 x3121 + 2.28 x3122 � PP;
8.64 x1211 + 4.32 x1212 + 4.56 x1221 + 2.28 x1222 + 8.64 x3211 + 4.32 x3212 + 4.56 x3221

+ 2.28 x3222 + 0.23 x4211 + 0.11 x4212 + 0.12 x4221 + 0.06 x4222
+ 0.23 x5211 + 0.11 x5212 + 0.12 x5221 + 0.06 x5222 � PP;

0.23 x5311 + 0.11 x5312 + 0.12 x5321 + 0.06 x5322 + 0.23 x6311 + 0.11 x6312 + 0.12 x6321
+ 0.06 x6322 � PP;

/* Integer Constraints */
INT x1111, x1112, x1121, x1122, x1211, x1212, x1221, x1222, x2111, x2112, x2121, x2122, x3111,
x3112, x3121, x3122, x3211, x3212, x3221, x3222, x4211, x4212, x4221, x4222, x5211, x5212,
x5221, x5222, x5311, x5312, x5321, x5322, x6311, x6312, x6321, x6322;

Figure 5.3. ILP Formulation for Example DFG using DFC, for RC3 and Switching Activity = "#���
123

www.manaraa.com

* * * + + +
1 2 3 4 5 6

c1

c2

c3

c4

c0

(a) Mobility Graph

Source NOP

1

2 3

4

6 5

0

7 NOPSink

* *

*

+

++

3.3V

3.3V

2.4V 2.4V

2.4V

3.3V

(b) Final Schedule

Figure 5.4. Example DFG for Resource Constraint RC3; using Multiple Supply Voltages and Mul-
ticycling

additional notations : (i) PP : peak power, (ii) *+á"! Ù �£� : number of multipliers at voltage level 1,

(iii) *+á"! Ù �B� : number of multipliers at voltage level 2, (iv) *úý Ù !i� : number of ALUs at voltage

level 1, and (v) *úý Ù !�� : number of ALUs at voltage level 2. The ILP formulations are solved

using LP-solve and the scheduled DFG is shown in Fig. 5.2(d).

5.3.2 Scheduler using Multiple Supply Voltages and Multicycling

The solution for the ILP formulation for multiple supply voltages and multicycling is illustrated

using the DFG shown in Fig. 5.4. The ASAP schedule is shown in Fig. 5.2 and the ALAP schedule

is shown in Fig. 5.2(a). From the ASAP and ALAP schedules the mobility graph shown in Fig.

5.4(a) is obtained. This mobility graph is different from that shown in Fig. 5.2(c); The mobility

graph in Fig. 5.4(a) considers the multicycle operations. Two operating voltage levels are assumed

in Fig. 5.4(a). The multipliers take two clock cycles when operated at low voltage level. For the

characterised cells used in our experiment [55], the operating clock frequency, r � C is SD*+ã�� . The

ILP formulations are obtained using this mobility graph. We have shown one such ILP formulation

124

www.manaraa.com

/* ILP Formulation for Simultaneous Peak and Average Power Minimization for MVMC scheme */

/* Objective function */
min: 1.7 x1111 + 0.9 x1212 + 1.7 x2111 + 0.9 x2212 + 1.7 x3111 + 0.9 x3212 + 1.7 x1122 + 0.9 x1212
+ 0.9 x1223 + 1.7 x2122 + 0.9 x2212 + 0.9 x2223 + 1.7 x3122 + 0.9 x3212 + 0.9 x3223 + 0.05 x4122
+ 0.02 x4222 + 0.05 x5122 + 0.02 x5222 + 1.7 x1133 + 0.9 x1223 + 0.9 x1234 + 1.7 x2133 + 0.9 x2223
+ 1.7 x3133 + 0.9 x3223 + 0.9 x3234 + 0.05 x4133 + 0.02 x4233 + 0.05 x5133 + 0.02 x5233
+ 0.05 x6133 + 0.02 x6233 + 1.7 x1144 + 0.9 x1234 + 1.7 x3144 + 0.9 x3234 + 0.05 x4144
+ 0.02 x4244 + 0.05 x5144 + 0.02 x5244 + 0.05 x6144 + 0.02 x6244 + 0.05 x5155 + 0.02 x5255
+ 0.05 x6155 + 0.02 x6255 + PP;
/* Uniqueness Constraints */
x1111 + x1122 + x1133 + x1144 + x1212 + x1223 + x1234 = 1;
x2111 + x2122 + x2133 + x2212 + x2223 = 1;
x3111 + x3122 + x3133 + x3144 + x3212 + x3223 + x3234 = 1;
x4122 + x4133 + x4144 + x4222 + x4233 + x4244 = 1;
x5122 + x5133 + x5144 + x5155 + x5222 + x5233 + x5244 + x5255 = 1;
x6133 + x6144 + x6155 + x6233 + x6244 + x6255 = 1;
/* Peak Power Constraints */
8.6 x1111 + 4.6 x1212 + 8.6 x2111 + 4.6 x2212 + 8.6 x3111 + 4.6 x3212 � PP;
8.6 x1122 + 4.6 x1212 + 4.6 x1223 + 8.6 x2122 + 4.6 x2212 + 4.6 x2223 + 8.6 x3122

+ 4.6 x3212 + 4.6 x3223 + 0.2 x4122 + 0.1 x4222 + 0.2 x5122 + 0.1 x5222 � PP;
8.6 x1133 + 4.6 x1223 + 4.6 x1234 + 8.6 x2133 + 4.6 x2223 + 8.6 x3133 + 4.6 x3223 + 4.6 x3234

+ 0.2 x4133 + 0.1 x4233 + 0.2 x5133 + 0.1 x5233 + 0.2 x6133 + 0.1 x6233 � PP;
8.6 x1144 + 4.6 x1234 + 8.6 x3144 + 4.6 x3234 + 0.2 x4144 + 0.1 x4244 + 0.2 x5144 + 0.1 x5244

+ 0.2 x6144 + 0.1 x6244 � PP;
0.2 x5155 + 0.1 x5255 + 0.2 x6155 + 0.1 x6255 � PP;
/* Resource Constraints */
x1111 + x2111 + x3111 � 0; /* Mmult1 */ x1212 + x2212 + x3212 � 2; /* Mmult2 */
x1122 + x2122 + x3122 � 0; /* Mmult1 */
x1212 + x1223 + x2212 + x2223 + x3212 + x3223 � 2; /* Mmult2 */
x1133 + x2133 + x3133 � 0; /* Mmult1 */ x1223 + x1234 + x2223 + x3223 + x3234 � 2; /* Mmult2 */
x1144 + x3144 � 0; /* Mmult1 */ x1234 + x3234 � 2; /* Mmult2 */
x4122 + x5122 � 2; /* Malu1 */ x4222 + x5222 � 0; /* Malu2 */
x4133 + x5133 + x6133 � 2; /* Malu1 */ x4233 + x5233 + x6233 � 0; /* Malu2 */
x4144 + x5144 + x6144 � 2; /* Malu1 */ x4244 + x5244 + x6244 � 0; /* Malu2 */
x5155 + x6155 � 2; /* Malu1 */ x5255 + x6255 � 0; /* Malu2 */
/* Precedence Constraints */
5 x6155 + 5 x6255 + 4 x6144 + 4 x6244 + 3 x6133 + 3 x6233 - 4 x1144 - 4 x1234 - 3 x1133

- 3 x1223 - 2 x1122 - 2 x1212 - x1111 � 1;
5 x6155 + 5 x6255 + 4 x6144 + 4 x6244 + 3 x6133 + 3 x6233 - 4 x4144 - 4 x4244 - 3 x4133

- 3 x4233 - 2 x4122 - 2 x4222 � 1;
4 x4144 + 4 x4244 + 3 x4133 + 3 x4233 + 2 x4122 + 2 x4222 - 3 x2133 - 3 x2223 - 2 x2122

- 2 x2212 - x2111 � 1;
5 x5155 + 5 x5255 + 4 x5144 + 4 x5244 + 3 x5133 + 3 x5233 + 2 x5122 + 2 x5222 - 4 x3144

- 4 x3234 - 3 x3133 - 3 x3223 - 2 x3122 - 2 x3212 - x3111 � 1;
/* Integer Constraints */
INT x1111, x1122, x1133, x1144, x1212, x1223, x1234, x2111, x2122, x2133, x2212, x2223, x3111,
x3122, x3133, x3144, x3212, x3223, x3234, x4122, x4133, x4144, x4222, x4233, x4244, x5122, x5133,
x5144, x5155, x5222, x5233, x5244, x5255, x6133, x6144, x6155, x6233, x6244, x6255;

Figure 5.5. ILP Formulation for Example DFG using Multicycling, for RC3 and Switching Activity
= "#���

125

www.manaraa.com

in Fig. 5.5 for the resource constraint (RC3), two multipliers at �A�Ü¼�9 two ALUs at
Z � Z 9 , and

switching activity �"#��� . In Fig. 5.5, the notations, such as, %'% , *+á"! Ù �£� , *Wá"! Ù �B� , *úý Ù !�� and*úý Ù !u� have same meaning as that of the DFC case shown in Fig. 5.3. The ILP formulations are

solved using LP-solve and the scheduled DFG is shown in Fig. 5.4(b).

5.4 Experimental Results

The ILP-based schedulers for both multiple supply voltages and dynamic clocking frequency,

and multiply supply voltages and multicycling schemes were tested with five high-level synthesis

benchmark circuits : (1) Example circuit (EXP), (2) FIR filter, (3) IIR filter, (4) HAL differential

equation solver and (5) Auto-Regressive filter (ARF). The notations used to express the various

results are given in Table 5.3.

The schedulers were tested using different sets of resource constraints (RC1,RC2,RC3,RC4,RC5)

shown in Table 5.4 for each benchmark circuit. The experimental results for various benchmark

circuits are reported in Table 5.5 for both dynamic frequency clocking and multicycling schemes.

The power is estimated including the overheads, such as level converters (used in both the schemes)

and dynamic clocking units (needed for dynamic frequency clocking case). It is assumed that each

resource has equal switching activity (��m ® �). The results are reported for two supply voltages and

for switching �"#��� .
To get a visual picture of the experimental results, we plotted the peak power reductions, av-

erage power reduction and the PDP reductions averaged over the different sets of resource con-

straints. Fig. 5.6 shows the average reductions for different benchmarks averaged over all resource

constraints. It is obvious from the figure that the reductions using combined multiple supply volt-

ages and dynamic frequency clocking are appreciable. It is observed that the power consumption

increases for higher switching and decreases for lower switching activity. The power reductions

for the proposed scheduling scheme are listed alongwith other scheduling algorithms dealing with

peak power reduction in Table 5.6. The table is not to provide an exact comparison, but to provide

a general idea of relative performance.

126

www.manaraa.com

Table 5.3. Notations used in Expressing Results%v ÷ : the peak power consumption (in á �) for single supply voltage
and single frequency operation% � : the peak power consumption (in á �) for multiple supply voltages
and dynamic frequency operation% O : the peak power consumption (in á �) for multiple supply voltages
and multicycle operation%�k ÷ : the average power consumption (in á �) for single supply voltage
and single frequency operation%�k � : the average power consumption (in á �) for multiple supply voltages
and dynamic frequency operation%�k O : the average power consumption (in á �) for multiple supply voltages
and multicycle operation� ÷ : the critical path delay for single supply voltage
and single frequency operation� � : the critical path delay for multiple supply voltages
and dynamic frequency operation� O : the critical path delay for multiple supply voltages
and multicycle operation%'Ä % ÷ : the power delay product (in ��Å) for single supply voltage
and single frequency operation ./ �% k ÷ 	�� ÷ 0%'Ä % � : the power delay product (in ��Å) for multiple supply voltage
and dynamic frequency clocking operation ./ �%Tk � 	�� � 0%'Ä % O : the power delay product (in ��Å) for multiple supply voltage
and multicycle operation ./ N%�k O 	�� O 0s¶%u � : the percentage peak power reduction using the multiple supply voltages

and dynamic frequency scheme Ý ó
 � t ´
 � v ô
 � t 	P�4"D" ßs¶% O : the percentage peak power reduction using the multiple supply voltages

and multicycle scheme Ýq ó
 � t ´
 � � ô
 � t 	��4"D" ßs¶%'Ä % � : the percentage PDP reduction using the multiple supply voltages

and dynamic frequency scheme Ý ó
 �
 t ´
 �
 v ô
 �
 t 	P�4"D" ßs¶%'Ä % O : the percentage PDP reduction using the multiple supply voltages

and multicycle scheme Ý ó
 �
 t ´
 �
 � ô
 �
 t 	��4"D" ß

127

www.manaraa.com

Table 5.4. Resource Constraints used for our Experiement

Resource Constraints Resource
Multipliers ALUs Constraint

2.4 V 3.3 V 2.4 V 3.3 V Labels

2 1 1 1 RC1
3 0 1 1 RC2
2 0 0 2 RC3
1 1 0 1 RC4
2 0 0 1 RC5

5.5 Peak Power Minimization

In the previous few sections we have presented the formulations for simultaneous minimization

of peak and average power of a datapath circuit. In this section we discuss the ILP-based scheduling

scheme that minimizes peak power only without explicitly considering the average power [45, 165].

The peak power consumption presented in Eqn. 5.2 serves as the objective function. The peak

power consumption Eqn. has been reproduced here for quick reference, where the notations are the

same meaning as used before.

% *úý�Ï � % � � & � ��@B® C£®�������� i *úý�Ï Ý � : ªm���@ ��mb® � $�mb® � 9 Cmb® � r � ß & � ��@zë i (5.22)

The above equation can be rewritten as follows for multiple supply voltages and multicycling op-

eration scenario; clock frequency is the same for all control steps and denoted as r � C .
% *úý�Ï � % � � & � ��@B® C£®�������� i *úý�Ï Ý � : ªmE��@ ��mb® � $�m ® � 9 Cmb® � r � C ß & � ��@zë i (5.23)

5.5.1 ILP Formulations

In this section, we formulate the ILP models for peak power minimization for both MVDFC and

MVMC scenario. The ILP models ensure that the dependency constraints and resource constraints

are satisfied. The level converters are considered as resources operating in the control step in which

128

www.manaraa.com

Ta
bl

e
5.

5.
P

ea
k

P
ow

er
,A

ve
ra

ge
P

ow
er

an
d

P
D

P
E

st
im

at
es

fo
r

B
en

ch
m

ar
ks

us
in

g
S

ch
ed

ul
in

g
S

ch
em

es

R
Pe

ak
Po

w
er

(

��)
A

ve
ra

ge
Po

w
er

(

��)
PD

P
E

st
im

at
es

(

��)
C

��� �
��� �
� ��� �
��� ��
��� �����
�����
��������
� ����
��� �
��� �
� ��� �
��� �
� ��� �

(1
)

1
17

.2
8

4.
56

73
.6

8.
76

49
.3

8.
86

2.
41

72
.8

6.
57

25
.8

2.
95

1.
33

54
.9

2.
92

0
e

2
17

.2
8

4.
56

73
.6

13
.6

8
20

.8
8.

86
2.

41
72

.8
6.

98
21

.2
2.

95
1.

33
54

.9
3.

1
0

x
3

17
.2

8
4.

56
73

.6
9.

12
47

.2
8.

86
2.

61
70

.5
5.

58
37

.0
2.

95
1.

30
55

.9
3.

1
0

p
4

8.
86

2.
39

73
.0

8.
86

0
6.

65
1.

88
71

.7
6.

65
0

2.
96

1.
36

54
.1

2.
95

0
A

ve
ra

ge
va

lu
es

73
.5

29
.3

72
.0

21
.0

55
.0

0
(2

)
1

17
.2

8
4.

56
73

.6
8.

76
49

.3
8.

82
2.

34
73

.5
7.

28
17

.5
4.

9
2.

34
52

.5
4.

85
0

f
2

17
.2

8
4.

56
73

.6
13

.6
8

20
.8

8.
82

2.
35

73
.4

7.
68

12
.9

4.
9

2.
35

52
.0

5.
12

0
i

3
17

.2
8

4.
56

73
.6

13
.6

8
20

.8
8.

82
2.

44
72

.3
6.

64
24

.7
4.

9
2.

30
53

.0
5.

12
0

r
4

17
.2

8
6.

60
61

.8
8.

86
48

.7
8.

82
2.

84
67

.8
7.

35
16

.7
4.

9
2.

68
45

.3
4.

9
0

A
ve

ra
ge

va
lu

es
70

.7
34

.9
71

.8
18

.0
50

.7
0

(3
)

1
25

.9
2

8.
88

65
.7

17
.7

6
31

.5
11

.0
3

3.
49

68
.4

8.
95

18
.9

4.
9

2.
32

52
.7

4.
97

0
i

2
25

.9
2

6.
84

73
.6

13
.6

8
47

.2
11

.0
3

2.
98

73
.0

7.
68

30
.4

4.
9

1.
98

59
.6

5.
12

0
i

3
17

.2
8

4.
56

73
.6

9.
12

47
.2

8.
82

2.
45

72
.2

5.
24

40
.6

4.
9

2.
0

59
.2

4.
66

4.
9

r
4

17
.2

8
6.

60
61

.8
13

.2
0

23
.6

8.
82

3.
31

62
.5

8.
05

8.
7

4.
9

2.
57

47
.6

5.
37

0
A

ve
ra

ge
va

lu
es

68
.7

37
.4

69
.0

24
.7

54
.8

1.
0

(4
)

1
17

.5
1

4.
62

74
.7

13
.3

2
23

.9
13

.2
5

3.
55

73
.2

8.
82

33
.4

5.
89

2.
76

53
.1

5.
88

0.
2

h
2

17
.5

1
4.

62
74

.7
13

.6
8

21
.9

13
.2

5
3.

55
73

.2
9.

23
30

.3
5.

89
2.

76
53

.1
6.

15
0

a
3

17
.5

1
4.

67
73

.3
9.

34
46

.7
13

.2
5

3.
73

71
.8

7.
98

39
.8

5.
89

2.
69

54
.3

6.
20

0
l

4
17

.5
1

6.
71

61
.7

13
.4

2
23

.4
10

.5
9

3.
73

64
.8

8.
90

16
.0

5.
88

3.
52

40
.1

5.
93

0
A

ve
ra

ge
va

lu
es

71
.1

29
.0

70
.8

29
.9

50
.2

0.
7

(5
)

1
8.

86
2.

34
73

.6
8.

64
2.

5
4.

50
1.

20
73

.3
3.

40
24

.4
5.

00
2.

00
60

.0
4.

85
3.

0
a

2
8.

86
2.

34
73

.6
8.

64
2.

5
4.

50
1.

20
73

.3
3.

58
24

.4
5.

00
2.

00
60

.0
4.

85
3.

0
r

3
8.

86
2.

39
73

.0
8.

76
1.

1
4.

50
1.

40
68

.9
3.

65
18

.9
5.

00
1.

90
62

.0
5.

0
0

f
4

8.
86

2.
39

73
.0

8.
76

1.
1

4.
50

1.
40

68
.9

3.
46

23
.1

5.
00

1.
90

62
.0

5.
0

0
A

ve
ra

ge
va

lu
es

73
.3

1.
8

71
.1

22
.7

61
.0

1.
1

A
ve

ra
ge

ov
er

al
lb

en
ch

m
ar

ks
71

.5
26

.5
71

.0
23

.3
54

.3
0.

5

129

www.manaraa.com

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Different benchmark circuits −>

P
ea

k
po

w
er

 r
ed

uc
tio

n
(%

)
−

>

(a) Peak power reduction using DFC scheme

1 2 3 4 5
0

5

10

15

20

25

30

35

40

Different benchmark circuits −>

P
ea

k
po

w
er

 r
ed

uc
tio

n
(%

)
−

>

(b) Peak power reduction using multicycling

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Different benchmark circuits −>

A
ve

ra
ge

 p
ow

er
 r

ed
uc

tio
n

(%
)

−
>

(c) Average power reduction using DFC scheme

1 2 3 4 5
0

5

10

15

20

25

30

35

Different benchmark circuits −>

A
ve

ra
ge

 p
ow

er
 r

ed
uc

tio
n

(%
)

−
>

(d) Average power reduction using multicycling

Figure 5.6. Average Reduction for Different Bechmarks

it needs to step up signal. The dynamic clocking unit (DCU) that generates dynamic frequency is

considered as a resource operating in all the control steps. The power dissipation of the level

converters and DCU are included. In order to formulate an ILP based model for Eqn. 5.22 and

hence a scheduling scheme for the DFG, we use the same notations given in Table 5.2.

5.5.1.1 Multiple Supply Voltages and Dynamic Frequency Clocking (MVDFC)

In this subsection, we describe the ILP formulation for peak power minimization using mul-

tiple supply voltages and dynamic frequency clocking. In dynamic frequency clocking, the clock

130

www.manaraa.com

Table 5.6. Peak and Average Power Reduction for Various Scheduling Schemes

Bench- Percentage average data for various schemes
mark DFC based Shiue [119] Martin [44] Raghunathan [47] Mohanty [48]

Circuits s¶% s¶%�k s¶% sV%�k s¶% s¶%ik s¶% sV%�k s¶% s¶%ik
EXP(1) 73 72 - - - - - - - -
FIR(2) 71 72 63 NA 40 NO 23 38 71 53
IIR(3) 69 69 - - - - - - - -

HAL(4) 71 71 28 NA - - - - 73 70
ARF(5) 73 71 50 NA - - - - 68 67

frequency is varied on-the-fly based on the functional units active in that cycle. In this clocking

scheme, all the units are clocked by a single clock line which switches at run-time. The frequency

reduction creates an opportunity to operate the different functional units at different voltages, which

in turn, helps in further reduction of power.

In this case the objective is to minimize the peak power consumption of the whole DFG over all

control steps described in Eqn. 5.22 without explicitly considering the average power minimzation.

Thus the objective function changes into the equation given below.

* ¥ � ¥ á ¥ �EL L %u Ý¯ N*úý�Ï�Ý¯� : ªm���@ � mb® �<$ mb® �h9 Cmb® � r � ß & � ��@zë i ß (5.24)

It should be noted that the % � kº is an unknown which has to be minimized. It may be power

consumption of any control step in the DFG depending on the scheduled operations and hence

is later used as a constraint. The constraints of the formulation, such as uniqueness constraints,

precedence constraints, resource constraints, frequency constraints, and peak power constraints

remains the same as before.

5.5.1.2 Multiple Supply Voltages and Multicycling (MVMC)

In this subsection, we describe the ILP formulation for peak power minimization using multi-

ple supply voltages and multicycling. In this scheme, the functional units are operated at multiple

supply voltages and the lower operating voltage functional units are scheduled in consecutive con-

trol steps. In this case the objective is to minimize the peak power consumption of the whole

131

www.manaraa.com

DFG over all control steps described in Eqn. 5.23 without explicitly considering the average power

minimization. Thus the ILP formulation becomes as the one given below.

* ¥ � ¥ á ¥ �EL L % Ý N*úý�Ï Ý � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � C ß & � ��@zë i ß (5.25)

It should be noted that the % � kº is an unknown which has to be minimized. It may be power con-

sumption of any control step in the DFG depending on the scheduled operations and hence is later

used as a constraint. The constraints of the formulation, such as uniqueness constraints, precedence

constraints, resource constraints, and peak power constraints remains the same as before.

5.5.2 ILP-Based Scheduler

In this section, we will discuss the solutions for the ILP formulations obtained in the previous

section. The target architecture and characterised datapath components are from [55]. The ILP

based scheduler which minimizes peak power consumption of the DFG has basically the same

steps as the one presented for simultaneous peak and average presented in Fig. 5.1. The first step is

to determine the as soon as possible (ASAP) time stamp of each operation. The second step is the

determination of the as late as possible (ALAP) time stamp of each vertex for the DFG. The ASAP

time stamp is the start time and the ALAP time stamp is the finish time of each operation. These

two times provide the mobility of an operation and the operation must be scheduled in this mobile

range. This mobility graph needs to be modified for the MVMC scheme. Then the scheduler

determines the ILP formulations based on the models described in Section 5.5.1. After the ILP

formulation is solved (using LP-Solve) the scheduled DFG is obtained. The scheduler determines

the cycle frequencies for the scheduled DFG for the MVDFC scheme.

5.5.2.1 Scheduling for MVDFC

We illustrate the solution for the ILP formulation in the MVDFC case, with the help of the

DFG shown in Fig. 5.7. The ASAP schedule is shown in Fig. 5.7(a) and the ALAP schedule is

shown in Fig. 5.7(b). From the ASAP and ALAP schedules we obtain the mobility graph as in

132

www.manaraa.com

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

c0

c1

c2

c3

c4

1 2 43 5 6

(a) ASAP Schedule (b) ALAP Schedule

* * * + ++ Source0
NOP

*

4

6

+

+

NOP Sink

5.0V

(c) Mobility Graph (d) Final Schedule

*
21

3.3V 3.3V

5.0V
*

3

3.3V

+

7

3.3V

5

Figure 5.7. Example DFG (for RC1) (MVDFC)

Fig. 5.7(c). Using this mobility graph, we have the ILP formulations shown in Fig. 5.8 for the

resource constraint (RC1) : two multipliers at
Z � Z 9 , one multiplier at �A�Ô"�9 , one ALU at

Z � Z 9 and

one ALU operating at �A�Ô"�9 . We solved the formulation using LP-solve and based on the results,

we obtained the scheduled DFG shown is Fig. 5.7(d). In Fig. 5.8, we used the following additional

notations, PP : peak power, *+á"! Ù �¿� : number of multipliers at voltage level 1, *+á"! Ù �}� : number

of multipliers at voltage level 2, *úý Ù !i� : number of ALUs at voltage level 1, and *úý Ù !u� : number

of ALUs at voltage level 2. The corresponding formulation expressed in AMPL [166] is given in

Fig. 5.9.

5.5.2.2 Scheduling for MVMC

We illustrate solution for the ILP formulation of the MVMC case, with the help of the DFG

shown in Fig. 5.10. The ASAP schedule is shown in Fig. 5.10(a) and the ALAP schedule is

133

www.manaraa.com

/* ILP Formulation for Peak Power Minimization for MVDFC scheme */

/* Objective Function */

min: PP;

/* Uniqueness Constraints */
x1111 + x1112 + x1121 + x1122 + x1211 + x1212 + x1221 + x1222 = 1;
x2111 + x2112 + x2121 + x2122 = 1;
x3111 + x3112 + x3121 + x3122 + x3211 + x3212 + x3221 + x3222 = 1;
x4211 + x4212 + x4221 + x4222 = 1;
x5211 + x5212 + x5221 + x5222 + x5311 + x5312 + x5321 + x5322 = 1;
x6311 + x6312 + x6321 + x6322 = 1;

/* Precedence Constraints */
3x6311 + 3 x6312 + 3 x6321 + 3 x6322 - 2 x1211 - 2 x1212 - 2 x1221 - 2 x1222

- x1111 - x1112 - x1121 - x1122 � 1;
2 x4211 + 2 x4212 + 2 x4221 + 2 x4222 - x2111 - x2112 - x2121 - x2122 � 1;
3 x6311 + 3 x6312 + 3 x6321 + 3 x6322 - 2 x4211 - 2 x4212 - 2 x4221 - 2 x4222 � 1;
3 x5311 + 3 x5312 + 3 x5321 + 3 x5322 + 2 x5211 + 2 x5212 + 2 x5221 + 2 x5222 - 2 x3211

- 2 x3212 - 2 x3221 - 2 x3222 - x3111 - x3112 - x3121 - x3122 � 1;

/* Resource Constraints */
x1111 + x2111 + x3111 + x1112 + x2112 + x3112 � 1; /* Mmult1 */
x1121 + x2121 + x3121 + x1122 + x2122 + x3122 � 2; /* Mmult2 */
x1211 + x3211 + x1212 + x3212 � 1; /* Mmult1 */
x1221 + x3221 + x1222 + x3222 � 2; /* Mmult2 */
x4211 + x5211 + x4212 + x5212 � 1; /* Malu1 */
x4221 + x5221 + x4222 + x5222 � 1; /* Malu2 */
x5311 + x6311 + x5312 + x6312 � 1; /* Malu1 */
x5321 + x6321 + x5322 + x6322 � 1; /* Malu2 */

/* Frequency Constraints */
x1121 = 0; x1221 = 0; x2121 = 0; x3121 = 0; x3221 = 0; x4221 = 0; x5221 = 0; x5321 = 0; x6321 = 0;

/* Peak Power Constraints */
39.6 x1111 + 19.8 x1112 + 17.3 x1121 + 8.6 x1122 + 39.6 x2111 + 19.8 x2112 + 17.3 x2121

+ 8.6 x2122 + 39.6 x3111 + 19.8 x3112 + 17.3 x3121 + 8.6 x3122 � PP;
39.6 x1211 + 19.8 x1212 + 17.3 x1221 + 8.6 x1222 + 39.6 x3211 + 19.8 x3212

+ 17.3 x3221 + 8.6 x3222 + 1.0 x4211 + 0.5 x4212 + 0.5 x4221 + 0.2 x4222
+ 1.0 x5211 + 0.5 x5212 + 0.5 x5221 + 0.2 x5222 � PP;

1.0 x5311 + 0.5 x5312 + 0.5 x5321 + 0.2 x5322 + 1.0 x6311 + 0.5 x6312
+ 0.5 x6321 + 0.2 x6322 � PP;

/* Integer Constraints */
INT x1111, x1112, x1121, x1122, x1211, x1212, x1221, x1222, x2111, x2112, x2121, x2122, x3111,
x3112, x3121, x3122, x3211, x3212, x3221, x3222, x4211, x4212, x4221, x4222, x5211, x5212,
x5221, x5222, x5311, x5312, x5321, x5322, x6311, x6312, x6321, x6322;

Figure 5.8. ILP Formulation for Example DFG (MVDFC)

134

www.manaraa.com

/* ILP Formulation for Peak Power Minimization for MVDFC scheme */

param TASK; # number of Tasks
param LEVEL; # number of levels in DFG
param VOLT; # number of voltage levels
param FREQ; # number of frequency levels
param ASAP 1..TASK ¡B¢ 0, � LEVEL; #ASAP Schedule for each Task
param ALAP 1..TASK ¡B¢ 0, � LEVEL; #ALAP Schedule for each Task
param OP 1..TASK ¡ ; #Type of Functional Unit
param POWER 1..2, 1..VOLT, 1..FREQ ¡ ; #Power Consumption of each Functional Unit
param M 1..2, 1..VOLT ¡ ; #Resource Constraints

var PP;
var X i in 1..TASK, j in ASAP[i]..ALAP[i], v in 1..VOLT, f in 1..FREQ ¡ binary;

#Objective Function
minimize peak power : PP;

Uniqueness Constraints
subject to uniq cons i in 1..TASK ¡ :

sum j in ASAP[i]..ALAP[i], v in 1..VOLT, f in 1..FREQ ¡ X[i, j, v, f] = 1;

Precedence Constraints
subject to pred cons1:

sum j in ASAP[6]..ALAP[6], v in 1..VOLT, f in 1..FREQ ¡ j * X[6, j, v, f]
- sum j in ASAP[1]..ALAP[1], v in 1..VOLT, f in 1..FREQ ¡ j * X[1, j, v, f] � 1;

subject to pred cons2:
sum j in ASAP[4]..ALAP[4], v in 1..VOLT, f in 1..FREQ ¡ j * X[4, j, v, f]

- sum j in ASAP[2]..ALAP[2], v in 1..VOLT, f in 1..FREQ ¡ j * X[2, j, v, f] � 1;
subject to pred cons3:

sum j in ASAP[6]..ALAP[6], v in 1..VOLT, f in 1..FREQ ¡ j * X[6, j, v, f]
- sum j in ASAP[4]..ALAP[4], v in 1..VOLT, f in 1..FREQ ¡ j * X[4, j, v, f] � 1;

subject to pred cons4:
sum j in ASAP[5]..ALAP[5], v in 1..VOLT, f in 1..FREQ ¡ j * X[5, j, v, f]

- sum j in ASAP[3]..ALAP[3], v in 1..VOLT, f in 1..FREQ ¡ j * X[3, j, v, f] � 1;

Resource Constraints
subject to res cons mult j in 1..LEVEL, v in 1..VOLT ¡ :

sum f in 1..FREQ, i in 1..TASK: ASAP[i] � j � ALAP[i] && OP[i] = 2 ¡ X[i, j, v, f] � M[2, v];
subject to res cons alu j in 1..LEVEL, v in 1..VOLT:

sum f in 1..FREQ, i in 1..TASK: ASAP[i] � j � ALAP[i] && OP[i] = 1 ¡ X[i, j, v, f] � M[1, v];

Peak Power Constraints
subject to pp cons j in 1..LEVEL ¡ :

sum v in 1..VOLT, f in 1..FREQ, i in 1..TASK: ASAP[i] � j � ALAP[i] ¡ POWER[OP[i], v, f]
* X[i, j, v, f] � PP;

#Frequency Constraints
subject to freq cons i in 1..TASK, j in ASAP[i]..ALAP[i] ¡ : X[i, j, 2, 1] = 0;

Figure 5.9. ILP Formulation for Example DFG (MVDFC) in AMPL

135

www.manaraa.com

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

(b) ALAP Schedule(a) ASAP Schedule

* * * + + +
1 2 3 4 5 6

NOP

(d) Final Schedule(c) Mobility Graph

NOP

Source0

7 Sink

c1

c2

c3

c4

c5

c0

+

+

*
2

4

5.0V

5

*
3

3.3V

3.3V 5.0V

6

5.0V

+

*

3.3V

1

Figure 5.10. Example DFG (for RC1) (MVMC)

shown in Fig. 5.10(b). From the ASAP and ALAP schedules we obtain the mobility graph which

is Fig.5.10(c). This mobility graph is different from that shown in Fig. 5.10(c). In the MVMC

case, the mobility graph considers the multicycle operations. We assume two operating voltage

levels, and when the multipliers are operated at lower voltage, they take two clock cycles. For the

characterised cells used in our experiment [55], the operating clock frequency, r � C is �7RD*+ã�� .
Using this mobility graph, we have the ILP formulations shown in Fig. 5.11 for the resource

constraint (RC1), two multipliers at
Z � Z 9 , one multipliers at �A�Ô"�9 , one ALU at

Z � Z 9 and one

ALUs operating at �A�Ô"�9 . The corresponding formulation expressed in AMPL [166] is given in

Fig. 5.12. We solved the formulation using LP-solve and based on the results we obtained the

scheduled DFG shown is Fig. 5.10(d). In Fig. 5.11, the notations, such as, PP, *Wá"! Ù �£� , *Wá"! Ù �}� ,*úý Ù !�� and *úý Ù !�� have same meaning as that of the MVDFC case shown in Fig. 5.8.

136

www.manaraa.com

/* ILP Formulation for Peak Power Minimization for MVMC scheme */

/* Objective Function */
min: PP;

/* Uniqueness Constraints */
x1212 + x1223 + x1111 + x1122 + x1133 = 1;
x2212 + x2111 + x2122 = 1;
x3111 + x3122 + x3133 + x3212 + x3223 = 1;
x4122 + x4133 + x4222 + x4233 = 1;
x5122 + x5133 + x5144 + x5222 + x5233 + x5244 = 1;
x6133 + x6144 + x6233 + x6244 = 1;

/* Peak Power Constraints */
39.6 x1111 + 8.6 x1212 + 39.6 x2111 + 8.6 x2212 + 39.6 x3111 + 8.6 x3212 � PP;
39.6 x1122 + 8.6 x1212 + 8.6 x1223 + 39.6 x2122 + 8.6 x2212 + 39.6 x3122 + 8.6 x3212

+ 8.6 x3223 + 1.0 x4122 + 0.5 x4222 + 1.0 x5122 + 0.5 x5222 � PP;
39.6 x1133 + 8.6 x1223 + 39.6 x3133 + 8.6 x3223 + 1.0 x4133 + 0.5 x4233 + 1.0 x5133

+ 0.5 x5233 + 1.0 x6133 + 0.5 x6233 � PP;
1.0 x5144 + 0.5 x5244 + 1.0 x6144 + 0.5 x6244 � PP;

/* Resource Constraints */
x1111 + x2111 + x3111 � 1; /* Mmult1 */
x1212 + x2212 + x3212 � 2; /* Mmult2 */
x1122 + x2122 + x3122 � 1; /* Mmult1 */
x1212 + x1223 + x2212 + x3212 + x3223 � 2; /* Mmult2 */
x1133 + x3133 � 1; /* Mmult1 */
x1223 + x3223 � 2; /* Mmult2 */
x4122 + x5122 � 1; /* Malu1 */
x4222 + x5222 � 1; /* Malu2 */
x4133 + x5133 + x6133 � 1; /* Malu1 */
x4233 + x5233 + x6233 � 1; /* Malu2 */
x5144 + x6144 � 1; /* Malu1 */
x5244 + x6244 � 1; /* Malu2 */

/* Precedence Constraints */
4 x6144 + 4 x6244 + 3 x6133 + 3 x6233 - 3 x1133 - 3 x1223 - 2 x1122 - 2 x1212 - x1111 � 1;
4 x6144 + 4 x6244 + 3 x6133 + 3 x6233 - 3 x4133 - 3 x4233 - 2 x4122 - 2 x4222 � 1;
3 x4133 + 3 x4233 + 2 x4122 + 2 x4222 - 2 x2122 - 2 x2212 - x2111 � 1;
4 x5144 + 4 x5244 + 3 x5133 + 3 x5233 + 2 x5122 + 2 x5222 - 3 x3133

- 3 x3223 - 2 x3122 - 2 x3212 - x3111 � 1;

/* Integer Constraints */
INT x1111, x1122, x1133, x1212, x1223, x2111, x2122, x2212, x3111, x3122, x3133,
x3212, x3223, x4122, x4133, x4222, x4233, x5122, x5133, x5144, x5222,
x5233, x5244, x6133, x6144, x6233, x6244;

Figure 5.11. ILP Formulation for Example DFG (MVMC)

137

www.manaraa.com

/* ILP Formulation for Peak Power Minimization for MVMC scheme */

param TASK; # Number of Tasks
param LEVEL; # Number of Levels in DFG
param VOLT; # Number of Voltage Levels
param ASAP 1..TASK ¡H¢ 0; #ASAP Schedule for each Task
param ALAP 1..TASK ¡H¢ 0; #ALAP Schedule for each Task
param OP 1..TASK ¡ ; #Type of Functional Unit
param M 1..2, 1..VOLT ¡ ; #Resource Constraints
param POWER 1..2, 1..VOLT ¡ ; #Power consumption of the Functional Unit

var PP;
var X i in 1..TASK, v in 1..VOLT, j in ASAP[i]..ALAP[i], k in ASAP[i]..ALAP[i] ¡ binary;

#Objective Function
minimize peak power: PP;
Uniqueness Constraints
subject to uniq cons i in 1..TASK ¡ :

sum j in ASAP[i]..ALAP[i] ¡ X[i, 1, j, j] + (if OP[i] = 2 then sum j in ASAP[i]..ALAP[i]-1 ¡
X[i, 2, j, j+1] else sum j in ASAP[i]..ALAP[i] ¡ X[i, 2, j, j]) = 1;

Precedence Constraints
subject to pred cons1:

sum v in 1..VOLT, j in ASAP[6]..ALAP[6] ¡ j * X[6, v, j, j] - sum j in ASAP[1]..ALAP[1] ¡ j
* X[1, 1, j, j] - sum j in ASAP[1]..ALAP[1]-1 ¡ (j+1) * X[1, 2, j, j+1] � 1;

subject to pred cons2:
sum v in 1..VOLT, j in ASAP[6]..ALAP[6] ¡ j * X[6, v, j, j] - sum v in 1..VOLT,

j in ASAP[4]..ALAP[4] ¡ j * X[4, v, j, j] � 1;
subject to pred cons3:

sum v in 1..VOLT, j in ASAP[4]..ALAP[4] ¡ j * X[4, v, j, j] - sum j in ASAP[2]..ALAP[2] ¡ j
* X[2, 1, j, j] - sum j in ASAP[2]..ALAP[2]-1 ¡ (j+1) * X[2, 2, j, j+1] � 1;

subject to pred cons4:
sum v in 1..VOLT, j in ASAP[5]..ALAP[5] ¡ j * X[5, v, j, j] - sum j in ASAP[3]..ALAP[3] ¡ j

* X[3, 1, j, j] - sum j in ASAP[3]..ALAP[3]-1 ¡ (j+1) * X[3, 2, j, j+1] � 1;
Resource Constraints
subject to res cons mult j in 1..LEVEL, v in 1..VOLT ¡ :

if v = 1 then sum i in 1..TASK: ASAP[i] � j � ALAP[i] && OP[i] = 2 ¡ X[i, 1, j, j]
else sum i in 1..TASK: ASAP[i] £ j £ ALAP[i] && OP[i] = 2 ¡ (X[i, 2, j-1, j] + X[i, 2, j, j+1]) +
sum i in 1..TASK: ALAP[i] = j && OP[i] = 2 ¡ X[i, 2, j-1, j] + sum i in 1..TASK: ASAP[i] = j

&& OP[i] = 2 ¡ X[i, 2, j, j+1] � M[2, v];
subject to res cons alu j in 1..LEVEL, v in 1..VOLT ¡ :

sum i in 1..TASK: ASAP[i] � j � ALAP[i] && OP[i] = 1 ¡ X[i, v, j, j] � M[1, v];
Peak Power Constraints
subject to pp cons j in 1..LEVEL-1 ¡ :

sum i in 1..TASK: ASAP[i] � j � ALAP[i] ¡ X[i, 1, j, j] * POWER[OP[i], 1]
+ sum i in 1..TASK: ASAP[i] £ j £ ALAP[i] && OP[i] = 2 ¡ (X[i, 2, j-1, j]
* POWER[OP[i], 2] + X[i, 2, j, j+1] * POWER[OP[i], 2])
+ sum i in 1..TASK: j = ALAP[i] && OP[i] = 2 ¡ X[i, 2, j-1, j] * POWER[OP[i], 2]
+ sum i in 1..TASK: ASAP[i] = j && OP[i] = 2 ¡ X[i, 2, j, j+1] * POWER[OP[i], 2]
+ sum i in 1..TASK: ASAP[i] � j � ALAP[i] && OP[i] = 1 ¡ X[i, 2, j, j] * POWER[OP[i], 2] � PP;

Figure 5.12. ILP Formulation for Example DFG (MVMC) in AMPL

138

www.manaraa.com

5.5.3 Experimental Results

The ILP based MVDFC and MVMC schedulers were tested with five benchmark circuits :

Example circuit (exp), FIR filter, IIR filter, HAL differential equation solver, and Auto-Regressive

filter (arf). The functional units used are ALUs and multipliers. The characterised datapath cells

are used from [55]. The scheduling algorithms were tested using the different sets of resource

constraints (RC1, RC2, RC3, RC4, RC5) shown in Table 5.7. The experimental results for vari-

ous benchmark circuits are reported in Table 5.8 for both MVDFC and MVMC case. The power

estimation includes the power consumption of the overheads, such as level converters (used in

both MVDFC and MVMC schemes) and dynamic clocking units (needed for MVDFC case). It

is assumed that each resource has equal switching activity (��mb® �). The results are reported for two

supply voltages and for switching N"#��� .
Table 5.7. Resource Constraints used for our Experiment

Resource Constraints Details Resource
Multipliers ALUs Constraint

3.3 V 5.0 V 3.3 V 5.0 V Label

2 1 1 1 RC1
3 0 1 1 RC2
2 0 0 2 RC3
1 1 0 1 RC4
2 0 0 1 RC5

To get a visual picture of the experimental results, we plotted the peak power reductions and

the PDP reductions averaged over all resource constraints. Fig. 5.13 shows the average reduc-

tions for different benchmarks averaged over all resource constraints. It is obvious from the figure

that the reductions are appreciable. It is observed that the power consumption increases for higher

switching and decreases for lower switching activity. The peak power reductions for the proposed

scheduling schemes are listed alongwith other scheduling algorithms dealing with peak power re-

duction in Table 5.5.3. The table is not to provide an exact comparison, but to provide a general

idea of relative performances.

139

www.manaraa.com

Table 5.8. Power Estimates for MVDFC and MVMC Scheduling Schemes

R Peak Power Estimate in ¤¦¥ PDP Estimates in §@¨
C ©«ª¬ ©7ª¯® °m©«ª¯® ©7ª�± °m©«ª¯± ©N²n© ¬ ©N²n© ® °m©N²n© ® ©N²n© ± °m©N²n© ±

1 2 3 4 5 6 7 8 9 10 11 12

1 79.2 17.3 78.2 35.6 55.1 20.3 7.8 61.9 17.0 16.1
e 2 79.2 17.3 78.2 51.8 34.6 20.3 7.8 61.9 12.0 41.1
x 3 79.2 17.3 78.2 34.6 56.4 20.3 7.6 62.5 15.3 24.8
p 4 40.7 9.2 77.5 40.7 0 27.1 10.5 61.4 27.1 0

5 40.7 9.2 77.5 34.6 15.1 27.1 10.5 61.4 15.1 44.3
Average values 77.9 32.2 61.8 25.3

1 79.2 17.3 78.2 40.7 48.6 56.2 21.8 61.1 51.8 7.8
f 2 79.2 17.3 78.2 51.3 35.2 56.2 21.8 61.1 49.3 12.3
i 3 79.2 17.3 78.2 35.6 55.1 56.2 22.0 60.9 34.3 39.0
r 4 79.2 40.6 48.7 40.7 48.61 56.2 46.6 17.1 67.5 -20.1

5 79.2 17.3 78.2 35.6 55.1 56.2 22.1 60.7 35.2 37.4
Average values 72.3 48.5 52.2 15.3

1 118.9 37.1 68.8 74.2 37.6 45.0 17.8 60.5 43.3 3.8
i 2 118.9 25.9 78.2 51.9 56.4 45.0 14.4 68.0 29.8 33.8
i 3 79.3 17.3 78.2 34.6 56.4 56.2 19.4 65.5 40.2 28.5
r 4 80.3 29.0 63.9 56.9 29.1 56.2 34.0 39.4 60.0 6.8

5 80.3 17.8 77.9 34.6 56.9 56.2 18.8 66.5 40.2 28.5
Average values 73.4 47.2 60.0 20.3

1 80.3 17.5 78.2 56.9 29.1 54.0 21.0 61.1 73.0 -35.2
h 2 80.3 17.5 78.2 51.8 35.5 54.0 21.0 61.1 35.9 33.5
a 3 80.3 17.8 77.8 35.6 55.7 54.0 20.8 61.5 42.3 21.7
l 4 80.3 29.0 63.9 58.0 27.8 67.5 45.7 32.2 73.5 -8.9

5 80.3 17.8 77.9 35.6 55.7 67.5 26.4 60.9 48.4 28.3
Average values 75.2 40.8 55.4 7.9

1 40.7 8.9 78.2 35.0 14.0 114.7 31.5 72.5 66.2 42.3
a 2 40.7 8.9 78.2 35.0 14.0 114.7 31.5 72.5 66.7 41.8
r 3 40.7 9.1 77.5 35.6 12.5 114.7 38.2 66.7 68.3 40.5
f 4 40.7 9.1 77.5 39.6 2.7 114.7 39.0 66.0 132.9 -15.9

5 40.7 9.1 77.5 35.6 12.5 114.7 38.2 66.7 68.3 40.5
Average values 77.8 11.1 68.9 29.8

Overall Average 75.3 36.0 59.7 19.7

140

www.manaraa.com

1 2 3 4 5
0

20

40

60

80

Different benchmark circuits −>

A
ve

ra
ge

 p
ea

k
po

w
er

 r
ed

uc
tio

n
(%

)
−

>

MVDFC

(a)

1 2 3 4 5
0

10

20

30

40

50

60

70

Different benchmark circuits −>

A
ve

ra
ge

 P
D

P
 r

ed
uc

tio
n

(%
)

−
>

MVDFC

(b)

1 2 3 4 5
0

10

20

30

40

50

Different benchmark circuits −>

A
ve

ra
ge

 p
ea

k
po

w
er

 r
ed

uc
tio

n
(%

)
−

>

MVMC

(c)

1 2 3 4 5
0

5

10

15

20

25

30

Different benchmark circuits −>

A
ve

ra
ge

 P
D

P
 r

ed
uc

tio
n

(%
)

−
>

MVMC

(d)

Figure 5.13. Average Reductions for Benchmarks

Table 5.9. Power Reduction for Various Scheduling Schemes

% Estimated average peak power reduction
Benchmark This work Shiue Martin Raghunathan

Circuits MVDFC MVMC [119] [44] [47]°m© ®{³7´ °m©N²n© ®{³7´ °X© ±m´ °m©N²n© ±X´ °m© °X© °m©
(1)exp 77.9 61.8 32.2 25.3 - - -
(2)fir 72.3 52.2 48.5 15.3 63.0 40.3 23.1
(3)iir 73.4 60.0 47.2 20.3 - - -
(4)hal 75.2 55.4 40.8 7.9 28.0 - -
(5)arf 77.8 68.9 11.1 29.8 50.0 - -

141

www.manaraa.com

5.6 Conclusions

Reduction of both peak power and average power consumption of a CMOS circuit is important.

This chapter addressed reduction of peak power and average power at behavioral level using low

power datapath scheduling techniques. Datapath scheduling schemes, one using multiple supply

voltage and dynamic clocking and another using multiple supply voltage and multicycling have

been introduced. ILP based optimization techniques were used for the above two modes of datapath

operations. Significant amount of peak and average power reduction over the single supply voltage

and single frequency scenario could be achieved in both the cases by the proposed scheduling

algorithm. The reductions attained in peak power, average power and power delay product by

using combined multiple supply voltage and dynamic frequency clocking were noteworthy. The

results clearly indicate that the dynamic frequency clocking is a better scheme than the multicycling

approach for power minimization.

142

www.manaraa.com

CHAPTER 6

ENERGY AND TRANSIENT POWER MINIMIZATION

In battery driven portable applications, the minimization of energy, average power, peak power,

and peak power differential are equally important to improve reliability and efficiency. The peak

power and peak power differential drive the transient characteristics of a CMOS circuit. In this

chapter, we propose a framework for simultaneous reduction of the energy and transient power dur-

ing behavioral synthesis. A new parameter called ”Cycle Power Function” (CPF) is defined which

captures the transient power characteristics as an equally weighted sum of normalized mean cycle

power and normalized mean cycle differential power. Minimizing this parameter using multiple

supply voltages and dynamic frequency clocking results in reduction of both energy and transient

power [48]. The cycle differential power can be modeled either as the mean deviation from the av-

erage power or as the cycle-to-cycle power gradient. The switching activity information is obtained

from behavioral simulations. Based on the above we develop a new datapath scheduling algorithm

called CPF-scheduler which attempts at power and energy minimization by minimizing the CPF

parameter by the scheduling process. The type and number of functional units available becomes

the set of resource constraints for the scheduler. Experimental results indicate that the scheduler

that minimizes CPF instead of conventional energy or average power as objective function could

achieve significant reductions in power and energy. The rest of the chapter is organized as follows.

The derivation of the $�%^& function based on the two models are presented in section 6.1. The

proposed scheduling algorithm are presented in section 6.2. The subsequent sections present the

experimental results and conclusions.

143

www.manaraa.com

6.1 Cycle Power Function (CPF)

In this section, we introduce the different notations and terminology required for defining the

cycle power function (CPF). The CPF must be defined such that it can capture simultaneously the

average power, the peak power and the peak power differential of the datapath. The peak power and

peak power differential determine the transient power characteristics of the circuit. Minimization

of the CPF using multiple voltages results in minimization of energy as well. The datapath is

represented as a sequencing data flow graph (DFG). The notations and terminology needed for the

proposed models are given in Table 6.1.

Table 6.1. List of Notataions and Terminology used in CPF Modelingp : total number of control steps in the DFGØ : total number of operations in the DFG¤ : a control step or a clock cycle in the DFG� m : any operation ¥ , where �'Í ¥ Í¬Ø ,% � : the total power consumption of all functional units active in control step ¤
(cycle power consumption)% � kh : peak power consumption for the DFG equal to áµý�Ï�.c% � 0 & �% : mean power consumption of the DFG (average % � over all control steps)%�F 5x{ l : normalised mean power consumption of the DFGÄ % � : cycle difference power (for cycle ¤ ; a measure of cycle power fluctuation)Ä % � kh : peak differential power consumption for the DFG equal to áµý�Ïi.cÄ %V�B0 & �Ä % : mean of the cycle difference powers for all control steps in DFGÄ % F 5x{ l : normalised mean of the mean difference powers for all steps in DFG$'%'& : cycle power function& M ¯® � : any functional unit of type � operating at voltage level >& M m : any functional unit & M ¯® � needed by � m for its execution (� m 1µ& M ¯® �)& M mb® � : any functional unit & M m active in control step ¤� � : total number of functional units active in step ¤
(same as the number of operations scheduled in ¤)��mb® � : switching activity of resource & M mb® �96mb® � : operating voltage of resource & M mb® �$�mb® � : load capacitance of resource & M m ® �r � : frequency of control step ¤

The CPF is defined to consist of two main components: the normalized mean cycle power

and the normalized mean cycle difference power. The normalized mean cycle power (%oF 5x{ l) is

the mean cycle power (%) normalized with respect to the peak power consumption (% � kº) of the

144

www.manaraa.com

DFG. The normalized mean cycle difference power (Ä %)F 5x{ l) is the mean cycle difference power

(ÄY%) normalized with respect to the peak power differential of the DFG. The second component

varies between the two models. The mean difference power is the mean of the cycle difference

power ÄY% � over the control steps. In model 1, the cycle difference power Ä % � is defined as the

absolute deviation of the cycle power from the mean cycle power. Then, the mean cycle difference

power ÄY% is the mean deviation of the cycle power from the mean cycle power. On other hand,

in model 2, the cycle difference power Ä % � of a current cycle is modelled as the cycle-to-cycle

power gradient. In other words, the cycle difference power ÄY% � of a current control step ¤ is

the difference (or gradient) of the current cycle power and the previous cycle power. This can be

expressed mathematically as, ÄY% � �% � dæ% � ´ @ or Ä % � ³ @P �% � ³ @�dæ% � . In this case, the mean

cycle difference power Ä % is the mean difference (or the gradient). The two models are further

elaborated and used in defining the CPF.

6.1.1 Model 1 : CPF using Mean Deviation

For a set of � observations, Ïi@7:BÏvC�:4�E�E�E�E:BÏvF from a given distribution, the sample mean (which

is an unbiased estimator for the population mean, Õ) is áÛ @F � Fm���@ Ï m . The absolute deviation

of these observations is defined as s¶Ï�m� Þ Ïvm�d á!Þ . The mean deviation of the observations is

given by *+Ä @F � FmE��@ Þ Ïvmgdûá!Þ . In this case, we model the cycle difference power ÄY% � as the

absolute deviation of cycle power % � from the mean cycle power % . Similarly, the mean difference

power ÄY% is modelled as mean deviation of the cycle power % � . The mean cycle power % is an

unbiased estimate of the average power consumption of the DFG.

The power consumption for any control step ¤ is given by Eqn. 6.1. This is the total power con-

sumption of all functional units active in control step ¤ . This also includes the power consumption

of the level converters where the level converters are considered as resources operating in a cycle¤ , if the current resource is driven by a resource operating at lower voltage.

% � : ªµ m���@ �gmb® � $�mb® � 9 Cmb® � r � (6.1)

145

www.manaraa.com

The peak power consumption of the DFG is the maximum power consumption over all the p
control steps which can be expressed as below.

% � kº áµý�Ï � % � � & � ��@B® C£®�������� i áµý�Ï Ý � : ªm���@ ��mb® � $�mb® � 9 Cm ® �<r � ß & � ��@B® C£®�������� i (6.2)

The mean cycle power consumption of the DFG (%) is defined as,

% @i �ji� ��@ % � @i �ji� ��@ Ý¯� : ªm���@ ��m ® � $�mb® � 9 Cm ® � r � ß (6.3)

The mean cycle power % is an unbiased estimate of the average power consumption of the DFG.

The true average power consumption of the DFG is the total energy consumption of the DFG per

clock cycle or per second. The normalised mean cycle power (%TF 5x{ l) is obtained by dividing %
by maximum cycle power (% � kh).

%�F 5x{ l

 � ©b§ � ñ¶ í ¶ª ð#ñ í·x ªï�ð#ñ ï� ª � ï� ª � zï� ª � ªl�k<� Ý í x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ßu¸ ª ð�ñ� z/ ¹ ¹ ¹ ¹ ¶ (6.4)

Thus, the normalised mean cycle power (%�F 5x{ l) is an unitless quantitity in the range [0,1].

The cycle difference power (ÄY% �) for any control step can be defined as follows. This is the

absolute deviation of the cycle power from the mean cycle power consumption of the DFG. This is

a measure of the cycle power fluctuation of the DFG.

Ä % � Þ %úd×% � Þ ººº @i �ji� ��@ Ý � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ß d!� : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ººº (6.5)

The peak differential power which characterizes the maximum power fluctuation of the DFG is

given by (Ä % � kh). This characterizes the maximum power fluctuation or the transient of the DFG

over the entire set of control steps.

ÄY% � kº áµý�Ï � Þ %+d×% � Þ � & � ��@B® C£®�������� i áµý�Ï Ý ººº @i � i� ��@ Ý � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ß d � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ººº ß & � ��@B® C£®������ i (6.6)

146

www.manaraa.com

The mean cycle difference power (Ä %) is calculated as the sample mean of ÄY% � . This is a measure

of the power spread or distribution of the cycle power over all control steps of the DFG.

Ä % @i � i� ��@ Ä %�� @i � i� ��@ Þ %+d×% � Þ @i �»i� ��@ Ý ººº @i �ji� ��@ Ý¯� : ªm���@ � mb® �<$ mb® �h9 Cmb® � r � ß d!� : ªm���@ � mb® �<$ mb® �h9 Cmb® � r � ººº ß
(6.7)

The normalised mean cycle difference power (ÄY%)F 5x{ l) can be written as given below.

ÄY% F 5x{ l �
�
 � ©b§ � ñ¶ í ¶ª ð�ñ Ý ººº ñ¶ í ¶ª ð�ñ Ý í x ªï�ð#ñ ï� ª � ï� ª � zï� ª � ª ß ´ í x ªï�ð#ñ ï� ª � ï� ª � zï� ª � ª ººº ßlok<� Ý ººº ñ¶ í ¶ª ð#ñ Ý íyx ªï�ð#ñ ï� ª � ï� ª �{zï� ª � ª ß ´ í¦x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ººº ßw¸ ª (6.8)

The above normalised mean cycle difference power ÄY%)F 5z{ l is a unitless quantity in the range

[0,1].

The cycle power function $'%'& which is modelled as the equally weighted sum of the nor-

malized mean cycle power (%�F 5x{ l) and the normalized mean cycle difference power (ÄY%TF 5x{ l) is

given below. $�%^&V.c%�F 5x{ l1:<ÄY%^F 5x{ l�0� �%�F 5z{ l OQÄY%'F 5x{ l (6.9)

Thus, the $'%'& will have a value in the range [0,2]. The $�%^& can be impacted by various con-

straints, including the resource constraints. In terms of peak cycle power (% � kh) and peak cycle

difference power (ÄY% � kh), the CPF can be expressed as :

$'%'&

 � ©b§ � O �
�
 � ©b§ � ñ¶ í ¶ª ð�ñ
 ª
 � ©b§ � O ñ¶ í ¶ª ð�ñE¼
 ´
 ª ¼�
 � © § � (6.10)

Using Eqn. 6.4 and 6.8, the cycle power function ($�%^&) can be written as follows.

$'%'&+ ñ¶ í ¶ª ð�ñ�í x ªï�ð�ñ ï� ª � ï� ª �{zï� ª � ªlok<� Ý íyx ªï�ð�ñ ï� ª � ï� ª � zï� ª � ª ßw¸ ª O ñ¶ í ¶ª ð�ñ Ý ººº ñ¶ í ¶ª ð#ñ Ý í x ªï�ð�ñ ï� ª � ï� ª �azï� ª � ª ß ´ í x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ººº ßl�kh� Ý ººº ñ¶ í ¶ª ð�ñ Ý íyx ªï�ð#ñ ï� ª � ï� ª � zï� ª � ª ß ´ íyx ªï�ð#ñ ï� ª � ï� ª � zï� ª � ª ººº ßw¸ ª(6.11)

147

www.manaraa.com

6.1.2 Model 2 : CPF using Cycle-to-Cycle Gradient

For a set Ï�@7:BÏuC¯:4�E�E�E�E:BÏvF of � observations from a given distribution, the observation-to-observation

gradient can be defined as, Þ Ï m ³ @ d[Ï m Þ , where �ûÍ ¥ Í½�×d+� . The mean gradient is given by@F ´ @ � F ´ @m���@ Þ Ïvm ³ @�dHÏ�mhÞ . It should be noted that there are � dæ� gradients for � observations. In this

case, we model the cycle difference power Ä %)� as the cycle-to-cycle power gradient and the mean

difference power Ä % as the mean gradient. The models for the mean cycle power or the average

power (Eqn. 6.1 - 6.3) remains the same as before.

The cycle difference power (ÄY% �) for any control step is defined as the difference in the power

consumption of the current to the previous control step, as given below.

ÄY% � ³ @ Þ % � ³ @Td×% � Þù ººº � : ª¾½ ñm���@ ��mb® � ³ @º$�m ® � ³ @h9 Cmb® � ³ @ r � ³ @�d!� : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ººº (6.12)

The peak differential power is characterized by (Ä % � kh) :

Ä % � kº áµý�Ï � Þ % � ³ @Td×% � Þ � & � ��@B® C£®�������� i ´ @ áµý�Ï Ý ººº � : ª�½ ñm���@ ��m ® � ³ @h$�mb® � ³ @º9 Cmb® � ³ @ r � ³ @�dæ� : ªm���@ ��mb® � $�mb® � 9 Cmb® � r � ººº ß & � ��@B® C£®������ i ´ @ (6.13)

The mean cycle difference power (ÄY%) is calculated as,

Ä % @i ´ @ � i ´ @� ��@ Ä % � ³ @ @i ´ @ � i ´ @� ��@ Þ % � ³ @�d×% � Þ @i ´ @ �ji ´ @� ��@ Ý ººº � : ª¾½ ñm���@ � mb® � ³ @ $ m ® � ³ @ 9 Cmb® � ³ @ r � ³ @ d!� : ªm���@ � mb® �h$ mb® �<9 Cmb® � r � ººº ß
(6.14)

The normalised mean cycle difference power (ÄY%)F 5x{ l) can be written as given below.

Ä % F 5x{ l �
�
 � ©b§ � ñ¶ » ñ í ¶ » ñª ð#ñ Ý ººº í x ª�½ ñï�ð�ñ ï� ª�½ ñ � ï� ª�½ ñ �Gzï� ª¾½ ñ � ª�½ ñ ´ í x ªï�ð�ñ ï� ª � ï� ª �azï� ª � ª ººº ßl�k<� Ý í x ª¾½ ñï�ð#ñ ï� ª¾½ ñ � ï� ª¾½ ñ �{zï� ª�½ ñ � ª¾½ ñ ´ í·x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ººº ßu¸ ª ð�ñ� z/ ¹ ¹ ¹ ¶ » ñ (6.15)

148

www.manaraa.com

Using Eqn. 6.4 and 6.15, the cycle power function ($�%^&) can be written as follows.

$�%'&ú N%�F 5x{ l OQÄ %�F 5x{ l

 � ©b§ � O �
�
 � © § � ñ¶ í ¶ª ð#ñ
 ª
 � ©b§ � O ñ¶ » ñ í ¶ » ñª ð�ñ¦¼
 ª�½ ñ ´
 ª ¼�
 � ©b§ � ñ¶ í ¶ª ð�ñ�í x ªï�ð�ñ ï� ª � ï� ª � zï� ª � ªlok<� Ý íyx ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ß ¸ ª O ñ¶ » ñ í ¶ » ñª ð#ñ Ý ººº í x ª¾½ ñï�ð#ñ ï� ª¾½ ñ � ï� ª¾½ ñ � zï� ª�½ ñ � ª¾½ ñ ´ í x ªï�ð#ñ ï� ª � ï� ª � zï� ª � ª ººº ßl�kh� Ý í x ª�½ ñï�ð�ñ ï� ª�½ ñ � ï� ª�½ ñ �Gzï� ª�½ ñ � ª�½ ñ ´ í¦x ªï�ð�ñ ï� ª � ï� ª �azï� ª � ª ººº ß ¸ ª ð#ñ� z/ ¹ ¹ ¹ ¶ » ñ(6.16)

The above function (Eqn. 6.11 or 6.16) can be used as the objective function for low power

datapath scheduling. The minimization of this objective function using multiple supply voltages,

dynamic frequency clocking and multicycling will lead to the reduction of energy and power pa-

rameters. From the equations, 6.10, 6.11, and 6.16 we make the following observations about the

cycle power function ($'%'&). The $'%'& is a non-linear function. It is a function of four param-

eters, such as, average power (%), peak power (% � kº), average difference power (Ä %) and peak

difference power (ÄY% � kº). Each of the above power parameters are dependent on switching ac-

tivity, capacitance, operating voltage and operating frequency. The absolute function (ý<3£Á or Þ^Þ)
in the numerator (of Eqn. 6.11 or 6.16) contributes to the nonlinearity. The complex behavior of

the function is also contributed by the denominator parameters, % � kh and ÄY% � kº .
The power models expressed in equation 6.16 and 6.11 for the $�%^& use generic parameters,

such as ��mb® � :º$�mb® � :º9�mb® � and r � . The intention of using such paramaters is to make the $�%'& model

a general one, independent of any specific energy or power models. It can accomodate both the

look-up table based energy (power) models and energy (power) macro-models. The generic model

can also help in easy integration of the $'%'& model in a behavioral synthesis tool that uses both

behavioral power estimator and datapath scheduler. Using the dynamic energy model proposed in

[51], we can express the effective switching capacitance of our proposed model as,

��m/$�mg +$tw/õ m .2��m @ :h��m C 0 (6.17)

149

www.manaraa.com

Here, the ��m and $�m are the parameters corresponding to the functional unit & M m . The $Çw/õ m is

a measure of the effective switching capacitance of resource (functional unit) & M m , which is a

function of ��m @ and ��m C ; where ��m @ and ��m C are the average switching activity values on the first and

second input operands of resource & M m . It should be noted that the above switching model (in Eqn.

6.17) handles input pattern dependencies. Moreover, the generic $�%'& model can be easily tuned

to handle any of the four modes of datapath circuit operation, such as, (i) single supply voltage and

single frequency, (ii) multiple supply voltages and single frequency, (iii) multiple supply voltages

and dynamic frequency and (iv) multiple supply voltage and multicycling. For example, for single

supply voltage and single frequency scheme, 9 mb® � and r � are same for all ¤ , for multiple supply

voltage and multicycling r � is same for all ¤ . Using Eqn. 6.17 we rewrite Eqn. 6.11 as,

$�%'&� ñ¶ í ¶ª ð#ñ�íyx ªï�ð#ñ � ¨ � ï� ª � zï� ª � ªl�kh� Ý í x ªï�ð#ñ � ¨ � ï� ª �Gzï� ª � ª ß ¸ ª O ñ¶ í ¶ª ð#ñ Ý ººº ñ¶ í ¶ª ð#ñ Ý íyx ªï�ð�ñ � ¨ � ï� ª � zï� ª � ª ß ´ í¦x ªï�ð�ñ � ¨ � ï� ª � zï� ª � ª ººº ßl�kh� Ý ººº ñ¶ í ¶ª ð�ñ Ý í x ªï�ð�ñ � ¨ � ï� ª �Gzï� ª � ª ß ´ í x ªï�ð#ñ � ¨ � ï� ª �{zï� ª � ª ººº ß ¸ ª (6.18)

Similarly, using Eqn. 6.17 we rewrite Eqn. 6.16 as,

$�%'&+ ñ¶ í ¶ª ð#ñ íyx ªï�ð#ñ � ¨ � ï� ª � zï� ª � ªl�k<� Ý í x ªï�ð#ñ � ¨ � ï� ª � zï� ª � ª ßw¸ ª O ñ¶ » ñ í ¶ » ñª ð#ñ Ý ººº í x ª�½ ñï�ð#ñ � ¨ � ï� ª¾½ ñ � zï� ª¾½ ñ � ª�½ ñ ´ í¦x ªï�ð�ñ � ¨ � ï� ª�½ ñ � zï� ª � ª ººº ßlok<� Ý í x ª�½ ñï�ð�ñ � ¨ � ï� ª�½ ñ � zï� ª¾½ ñ � ª�½ ñ ´ í x ªï�ð�ñ � ¨ � ï� ª�½ ñ � zï� ª � ª ººº ßu¸ ª ð�ñ-¿ ¶ » ñ(6.19)

The notation $Çw�õ mb® � represents $Çw/õ m for the functional unit & M m active in control step ¤ . The

above two function (Eqn. 6.18 and Eqn. 6.19) are used as objective functions for our scheduling

algorithm. ��m @ and ��m C are estimated using behavioral simulation of a DFG [167, 168, 169]. A

look-up table constructed to store the $ w�õ values for different combinations of (� @ and � C) for

different types of functional units, such as multipliers and ALUs. We use interpolation technique

to determine the $ w�õ values for the (� @ and � C) combinations that are not available in the look-up

table.

6.2 CPF-Scheduler Algorithm

In this section, we develop a scheduling algorithm that minimizes the objective functions (Eqn.

6.18 or 6.19) using multiple voltages and dynamic clocking to reduce energy and the powers.

150

www.manaraa.com

We assume the availability of different functional units operating at different supply voltages. In

dynamic frequency clocking or frequency scaling, all the units are clocked by a single clock line

which can switch frequencies at run-time [60, 62, 63]. In such systems, a dynamic clocking unit

(DCU) generates different clocks using a clock dividing strategy. It should be noted that frequency

scaling helps in reducing power, but not energy. Moreover, the frequency reduction facilitates the

the operations of the different functional units at different voltages, which in turn helps in energy

reduction.

The target architecture model assumed for the scheduling is from [65]. Each functional unit is

associated with a register and a multiplexor. The register and the multiplexor will operate at the

same voltage level as that of the functional units. Level converters are used when a low-voltage

functional unit is driving a high-voltage functional unit [65, 95]. A controller decides which of the

functional units are active in each control step and those that are not active are disabled using the

multiplexors. The controller will have a storage unit to store the cycle frequency index (¤ ru¥ �) values

obtained from the scheduling, used as the clock dividing factor for the dynamic clocking unit. The

cycle frequency r � is generated dynamically and a corresponding functional unit is activated.

The delay for a control step is dependent on the delays of the functional units (6uDGF), multi-

plexor (6 O A7�), register (6 : � ö) and level converters (6 � 5 F �) as expressed in following equation.

6 � »6EDGF Of6 O A7��Of6 : � ötOf6 � 5 F � (6.20)

where, 6 � is the delay of control step ¤ , 6<DGF is the delay of the slowest FU in the control step ¤
and the register delays include the set-up and propagation delays. Using the above delay model,

the worst case delays of the library components are estimated. For a given base frequency (r6¢ kºw �),
maximum frequencies of each FU are scaled down to operating frequencies . r �h0 . These parameters

are determined as follows : r�¢ kºw � ÀwÁ @/. f ²uï îªÃÂCÅÄ � Æ � n �¤ ru¥ � Ç Á f ª�. f ²�ï îªÈÂC î É � Fr � �z¦�§B¨b©� � m«ª
(6.21)

151

www.manaraa.com

Input : UDFG, resource constraints,
� � ,

� � , all 96mÊ1s96n<Ë , 6UDGF , 6 O A7� , 6 : � ö , 6 � 5 F �
Output : scheduled DFG, r�¢ k£w � , p , ¤ ru¥ � , power, energy and delay estimates
Step 1 : Calculate the switching activity at the inputs of each node through

behavioral simulation of the DFG.
Step 2 : Construct a look-up table of effective switching capacitance, switching activity pairs.
Step 3 : Find ASAP and ALAP schedules of the UDFG.
Step 4 : Determine the number of multipliers and ALUs at different operating voltages.
Step 5 : Modify both ASAP and ALAP schedules obtained in Step 1 using the number of

resources found in Step 2 as initial resource constraint.
Step 6 : Calculate the total number of control steps which is the maximum of

ASAP and ALAP schedules from Step 5.
Step 7 : Find the vertices having non-zero mobility and vertices with zero mobility.
Step 8 : Use the CPF-Scheduler-Heuristics to assign the time stamp and operating voltage for

the vertices, and the cycle frequencies such that $�%'& and time penalty are minimum.
Step 9 : Find base frequency r�¢ k£w � and cycle frequency index ¤ ru¥ � .
Step 10 : Calculate power, energy and delay details.

Figure 6.1. The CPF-Scheduler Algorithm Flow

where, 6 lTm«F� is the minimum of the control step delays and
� � is the number of allowable frequen-

cies. The value of � is chosen in such a way that ¤ ru¥ � is closest value greater than or equal toÌ fBªf ²�ï îª Í .
The inputs to the algorithm are an unscheduled data flow graph (UDFG), the resource con-

straints, the number of allowable voltage levels (
� �), the number of allowable frequencies (

� �),
delay of each resource (6 DGF), multiplexor (6 O A7�), register (6 : � ö) at different voltage levels. The

delays of level converters (6 � 5 F �) are represented in the form of a matrix that shows the delay for

converting one voltage level 9um to another voltage level 9Aü (where, both 96mx:º9�ü 1N9�n�Ë). The re-

source constraint includes the number of ALUs and multipliers at different voltage levels 9�m (where,96mB1×96n<Ë). The scheduling algorithm determines the proper time stamp for each operation, r�¢ k£w � ,¤ ru¥ � and the voltage level such that the objective function in Eqn. 6.18 or 6.19 as well as the time

penalty is minimum. To reduce the time penalty, the lesser energy consuming resources are used

at as maximum frequency as possible.

The CPF-Scheduler : The flow of the proposed algorithm is outlined in Fig. 6.1. In step 1,

the switching activities at the inputs of each node are determined using behavioral simulation of

the DFG. For this purpose, different sets of application specific input vectors (having different

152

www.manaraa.com

CPF-Scheduler-HeuristicJ
(01) Initialize CurrentSchedule as modified ASAPSchedule ;
(02) while(all mobile vertices are not time stamped) do
(03)

J
(04) for the CurrentSchedule
(05)

J
(06) if (>�m is a multiplication) then

Find the lowest available voltage for multipliers;
(07) if (>�m is add/sub/comparison) then

Find the highest available operating voltage for ALUs;
(08)

_
/* end for (04) */

(09) Find $'%'& for CurrentSchedule and denote is as Current $'%'& ;
(10) Find

� ¡ for CurrentSchedule and denote is as Current
� ¡ ;

(11) Maximum +dXl ;
(12) for each mobile vertex > m
(13)

J
(14) ¤��t CurrentSchedule[>�m]; ¤4�� ALAPSchedule[>�m];
(15) for ¤o ¬¤�� to ¤4� in steps of 1
(16)

J
(17) Find a TempSchedule by adjusting CurrentSchedule in which > m

is scheduled in step ¤ ;
(18) Find next higher operating voltage for multiplication vertex for the TempSchedule

(next lower for ALU operation) ;
(19) Find $'%'& for TempSchedule, denoted by Temp $�%'& ;
(20) Find

� ¡ for TempSchedule, denoted Temp
� ¡ ;

(21) Difference (Current $'%'&+O Current
� ¡) d (Temp $'%'&NO Temp

� ¡) ;
(22) if (Difference

X
Maximum) then

(23)
J

(24) Maximum = Difference ;
(25) CurrentVertex = >�m ;
(26) CurrentCycle = ¤ ;
(27) CurrentVoltage = Operating voltage of > m
(28)

_
/* end if (22) */

(29)
_

/* end for (15) */
(30)

_
/* end for (12) */

(31) Adjust CurrentSchedule to accomodate CurrentVertex in Currentcycle operating
at voltage assigned above ;

(32)
_

/* end while (02) */_
/* End CPF-Scheduler-Heuristic */

Figure 6.2. The CPF-Scheduler Algorithm Heuristic

153

www.manaraa.com

correlations) are given at the primary inputs of the DFG and the average swtiching activity at each

node is calculated [167, 168, 169]. In step 2, the scheduler constructs a look-up table with effective

switching capacitance and the average switching activity pair as described in Eqn. 6.17. The

size of the look-up table impact the accuracy of the results. If the look-up table is large enough

to contain the switching capacitance for all estimated average swtiching activities in step 1, then

the power model accuracy is the highest. The scheduler uses interpolation techniques to find the

switching capacitance for a pair of input average swtiching activity that does not exist in the look-

up table. The algorithm determines the as-soon-as-possible (ASAP) and the as-late-as-possible

(ALAP) schedules for the UDFG in step 3. The ASAP schedule is unconstrained and the ALAP

schedule uses the number of clock steps found in the ASAP schedule as the latency constraint. In

step 4, the number of resources of each type and voltage levels is determined. For example, if the

resource constraint is � multiplier at �A�Ü¼�9 , � multipliers at
Z � Z 9 , � ALUs at �A�Ü¼�9 and

Z
ALUs

at
Z � Z 9 , then the relaxed voltage initial resource constraint is found out to be

Z
multipliers and �

ALUs. In step 5, the scheduler uses the above relaxed voltage resource constraints and modifies the

ASAP and ALAP schedules to take into account the resource constraints. This helps in restricting

the mobility of vertices to a great extent and reducing the solution search space for the heuristic.

Due to the resource constraints the number of control steps of modified ASAP and modified ALAP

may be different from that of the ASAP and ALAP schedule in step 3. In step 6, the scheduler

fixes the total number of control steps of the schedule which is the maximum of the control steps

of the modified ASAP or modified ALAP in step 5. In step 7, the vertices are marked as having

zero mobility or non-zero mobility. The zero mobility vertices are those having same modified

ASAP time stamp and modified ALAP time stamp, and non-zero mobility vertices are those having

different modified ASAP and modified ALAP time stamp. On determining the vertices having

zero mobility and vertices having non-zero mobility, proper time stamp and operating voltage for

mobile vertices, and operating voltages for non-mobile vertices are found out. Further, operating

clock frequencies are established such that the $�%'& as well as the time penalty is minimum. The

CPF-Scheduler uses an heuristic algorithm for the same. In step 9, the scheduler determines the

base frequency (r�¢ kºw �) and cycle frequency index (¤ ru¥ �) using Eqn. 6.21. In step 10, the scheduler

154

www.manaraa.com

calculates the peak power, average power, peak power differential, energy estimates of the scheuled

DFG and also the critical path delay.

The CPF-Scheduler Heuristic : Fig. 6.2 shows the heuristic algorithm used by the CPF-

Scheduler. The inputs to the CPF-Scheduler heuristic are modified ASAP time stamp of each vertex

(
À m), the modified ALAP time stamp of each vertex (;�m), the resource constraints, the number of

allowable voltage levels (
� �), the number of allowable frequencies (

� �). Delay of each functional

unit (6UDGF), multiplexor (6 O A7�), register (6 : � ö) at different voltage levels are also given as inputs.

Delays of level converters (6 � 5 F �) is represented in the form of a matrix. The heuristic has to find

time stamp ¤ (in the range [
À m :<; m]) and operating voltage 9 m ® � for each vertex > m with operation � m .

The aim of the heuristic is to minimize $�%'& as described in Eqn. 6.18 and 6.19 while keeping

time penalty at a minimum. The heuristic minimized time ratio
� ¡ alongwith $'%'& to minimize

the time penalty. The time ratio (
� ¡) is defined as the ratio between the critical path delay when

the vertices of the DFG are operating at multiple voltage (� �) and when each of the vertices of

the DFG is operated at the highest voltage. Expressing mathematically,
� ¡= ¡ v¡ t . These two

objectives, minimization of $�%'& (minimization of energy and power) and minimization of time

penalty are mutually conflicting. This is due to the fact that if operating voltage is reduced to min-

imize energy / power consumption this results in increase of critical path delay and hence increase

of time penalty. The heuristic operates the energy hungry functional units at the highest possible

voltage (frequency) and the less energy consuming functional units at lowest voltage (frequency) to

achieve the simultaneous minimization of the mutually conflicting objectives. The heuristic fixes

operating voltages of the non-mobile vertices as per this order depending on the types of resource

they need. The heuristic attempts to find suitable time stamp and operating voltage for the mobiles

vertices using exhaustive search. The mobiles-vertices are attempted to be placed in each of the

time stamps within their mobile range ([
À m :<; m]), when each placement and voltage assignment is

done, the $'%'& and
� ¡ value is calculated. The predecessor and successor time stamps are ad-

justed accordingly to maintain the precedence. For this purpose the heuristic maintains a matrix

of dimension (p 	1Þ �gÞÜ9vn<Ë) having number of resources of different types (�) as entries rowwise

over all control steps. The Þ �gÞ is the type of resources available, for example, if only multiplier and

155

www.manaraa.com

ALUs are the available resources then the Þ �gÞ� ù� . If a voltage is assigned for a vertex, then the

matrix entry of the corresponding type and operating voltage is decremented. A particular vertex is

placed in a cycle for which the sum of $'%'& and
� ¡ is minimum. The heuristic, initially assumes

the modified ASAP schedule (with relaxed voltage resource constrained) as the current schedule

(line 01). In case a vertex is a multiplication operation, then the initial voltage assignment is the

minimum available operating depending on the number of multipliers, whereas, for ALU opera-

tions vertex, it is the maximum available operating voltage (line 04-08). Then the $�%'& and
� ¡

value for the current schedule is calculated (line 09 and line 10). The heuristic finds $'%'& (and� ¡) values for each allowable control step of each mobile vertices and for each available operating

voltages denoted as Temp $�%'& (and Temp
� ¡) (line 17-20). The statement in line 17 adjusts the

current schedule by adjusting the time stamps of successor vertices while maintaining the resource

constraint (using the matrix) and guaranting that the precedence is satisfied. In line 12, the vertices

are visited in ASAP manner. Another possible way of visiting the mobile vertices is to prioritise

them in some manner, say vertex with lower mobility is visited first. The heuristic fixes the time

step and operating voltage for a vertex and hence cycle frequency for which $�%^&NO � ¡ is min-

imum (line 22-26). For $�%'& computation the heuristics uses @fBª as a temporary measure for r � .
The above steps are repeated until all mobile vertices are time stamped.

Time complexity of CPF-Scheduler Heuristic : Let there be ÞÜ9 Þ number of vertices in the DFG,

out of which ÞÜ96l¶Þ number of vertices have mobility and the maximum mobility of any mobile

vertex is �}l . It should be noted that the total number of vertices in the DFG is total number of

operations in DFG and the total number of NO-OPs. The running time of finding an operating

voltage from the matrix for particular type of operation is ØV. � � 0 . The statements from line 04-08

have running time of R¶.<ÞÜ9 Þ � � 0 . The worst case running time of the statement in line 17 (or line

31) that adjusts the current schedule is ØÑ.<ÞÜ9 l ÞÜ0 . The running time of the code segment between

line 17-28 is ØÑ.<ÞÜ96l¶ÞÜ0ÇO=ØV. � � 0oOÎRV.<ÞÜ9 ÞÜ0tOÎR¶.<ÞÜ9 ÞÜ0 , which is R¶.<ÞÜ9 ÞÜ0 , since it is always true

that ÞÜ96l¶Þ�: � � ¹ ÞÜ9 Þ . So, the running time of the code segment from line 15-29 is R¶.b�ºl)ÞÜ9 ÞÜ0 .
Thus, the running time of the code segment line 12-30 is R¶.b�ºl)ÞÜ96l)ÞEÞÜ9 ÞÜ0 . The other statements of

the pseudocode have constant running time. So, the running time or time complexity of the code

156

www.manaraa.com

segment in line 03-29 is R¶.<ÞÜ9 ÞEÞ � � ÞÜ0TOkR¶.b�xl-ÞÜ9�l¶ÞEÞÜ9 ÞÜ0�OWØV.<ÞÜ96l)ÞÜ0 . This can be simplified to an

weak upper bound on worst case running of the code segment (line 03-31) under the assumption

that ÞÜ96l¶Þ�� ÞÜ9YÞ , but in practice ÞÜ9�l¶Þ ¹'¹ ÞÜ9YÞ . Under the above assumption we conclude that

the worst case upper bound on the running time of the code segement in line 03-31 is R¶.b�¿l¶ÞÜ9YÞ C 0 .
Considering the while loop in line 02 the overall running time of the algorithm can be written asR¶.b�xl-ÞÜ9 Þ C ÞÜ9�l)ÞÜ0 . Again under the assumption that ÞÜ9ul)Þi�ÛÞÜ9YÞ , we conclude that the worst case

upper bound on the running time of the algorithm is R¶.b�hl-ÞÜ9 Þ � 0 . In other words, the heuristic runs

in time cubic to the number of vertices in the DFG. It can be noted that the time complexity of the

algorithm is independent of the number of operating voltage levels.

6.3 Experimental Results

The CPF-Scheduler algorithm was implemented in C and tested with selected benchmark cir-

cuits. The benchmarks used are given below.

3 Auto-Regressive filter (ARF) (total 28 nodes, 16*, 12+, 40 edges).

3 Band-Pass filter (BPF) (total 29 nodes, 10*, 10+, 9-, 40 edges).

3 DCT filter (total 42 nodes, 13*, 29+, 68 edges).

3 Elliptic-Wave filter (EWF) (total 34 nodes, 8*, 26+, 53 edges).

3 FIR filter (total 23 nodes, 8*, 15+, 32 edges).

3 HAL differential equation solver (total 11 nodes, 6*, 2+, 2-, 1 ¹ , 16 edges).

Our algorithm can handle large DFGs and find solutions in reasonable time. The parameters used

to express our experimental results are shown in Table 6.2.

We use a look-up table method as discussed in Section 6.1 for average switching capacitance

calculation. The look-up table construction consists of two phases, such as input pattern generation

and cell characterization. We generate the primary input signals of different correlations, using

the autoregressive moving average (ARMA) model [169]. We perform the characterization of the

157

www.manaraa.com

Table 6.2. Notations used to Express the Results; ÷ : total energy consumption assuming single frequency and single supply voltage; � : total energy consumption for dynamic clocking and multiple supply voltage% ÷ : peak power consumption for single frequency and single supply voltage% � : peak power consumption for dynamic clocking and multiple supply voltage%�l ÷ : minimum power consumption for single frequency and single supply voltage%�l � : minimum power consumption for dynamic clocking and multiple supply voltage� ÷ : execution time assuming single frequency� � : execution time assuming dynamic frequencysV; : total energy reduction ° t ´ ° v° tsV% : average power reduction ó °wt .z¡ t ô ´ ó °wv .z¡ v ôó ° t .z¡ t ôsV% : peak power reduction
 � t ´
 � v
 � tsVÄY% : differential power reduction ó
 � t ´
 ²�t ô ´ ó
 � v ´
 ²�v ôó
 � t ´
 ² t ô� ¡ : time ratio ¡ v¡ t
physical implementations of the library modules available in [55] by applying the input patterns

generated as above for the values of (� m @ :h� m C) pairs in the table. We used interpolation to find the

average switching capacitance for any of (��m @ :h�gm C) pairs that do not exist in the look-up table. It

should be noted that larger the size of look-up table, better is the accuracy. Our look-up table has

100 pairs of entries for (�im @ :h��m C). The signals are propagated through different operators in the

DFG and the average switching activities are calculated as described in [169] for each node.

Our first set of experiments were carried out for the $�%'& model 1 (Eqn. 6.18) in which the

cycle difference power is based on the absolute deviation. We tested the scheduling algorithm using

the following sets of resource constraints (RC1, RC2, RC3, RC4).

Number of multipliers : � at �A�Ü¼�9 and Number of ALUs : � at
Z � Z 9

Number of multipliers : � at �A�Ü¼�9 and Number of ALUs : � at
Z � Z 9

Number of multipliers : � at �A�Ü¼�9 and Number of ALUs : � at �A�Ü¼�9 and � at
Z � Z 9

Number of multipliers : � at �A�Ü¼�9 and � at
Z � Z 9 ; Number of ALUs : � at �A�Ü¼�9 and � at

Z � Z 9
The sets of resource constraints was chosen so as to cover resources at different operating voltages.

The number of allowable voltage levels was assumed to be two (�A�Ü¼�9�: Z � Z 9) and maximum number

of allowable frequencies are three. The CPF-scheduler determines the frequencies, in this case

they are (¼����D*+ã���:hSA�Ô"�*úã �6:7�7RA�Ô"�*+ã��). The experimental results for different benchmarks are

158

www.manaraa.com

Table 6.3. Power Estimates for Different Benchmarks (using Model 1)

C Power reduction details, Energy savings, Number of clock cycles and Time penalty
K R %u ÷ %u � s¶%v % l ÷ % l � s¶Ä % sV% s¶; p � ¡
T C .bá � 0 .bá � 0 (%) .bá � 0 .bá � 0 (%) (%) (%)
1 2 3 4 5 6 7 8 9 10 11 12

1 9.30 2.83 69.60 0.26 0.52 74.50 71.40 47.57 18 1.6
A 2 18.33 4.77 73.96 0.26 0.52 76.47 68.30 47.57 13 1.4
R 3 18.59 4.84 73.96 0.26 0.52 76.44 71.72 49.87 11 1.5
F 4 18.59 7.26 60.96 0.26 0.52 63.25 59.10 29.49 11 1.5

Average values 69.62 72.67 67.63 43.62 1.5
1 9.30 2.45 73.62 0.26 0.52 78.64 65.80 46.69 17 1.3

B 2 18.33 4.20 77.10 0.26 1.67 86.03 58.81 46.69 17 1.2
P 3 18.59 4.84 73.96 0.52 0.97 78.59 71.09 48.61 9 1.4
F 4 18.59 7.33 60.60 0.52 0.97 64.84 64.01 32.02 9 1.4

Average values 71.32 77.02 64.93 43.50 1.3
1 9.30 2.83 69.60 0.26 0.52 74.50 50.90 42.44 29 1.1

D 2 9.30 2.83 69.60 0.26 0.52 74.50 50.90 42.44 29 1.1
C 3 18.59 4.84 73.96 0.26 0.40 75.75 67.70 42.93 15 1.4
T 4 18.59 7.61 59.05 0.26 0.40 60.63 65.19 38.49 15 1.4

Average values 68.05 71.35 58.67 43.58 1.2
1 9.30 2.45 73.62 0.26 0.52 78.64 41.17 44.43 27 0.9

E 2 18.07 4.07 77.49 0.26 0.52 80.09 37.49 44.43 27 0.9
W 3 18.07 4.07 77.49 0.26 0.40 79.38 57.89 44.73 16 1.2
F 4 18.07 6.55 63.75 0.26 0.40 65.49 53.10 38.45 16 1.2

Average values 73.09 75.90 47.41 43.01 1.1
1 9.30 2.74 70.52 0.26 0.52 75.45 58.54 46.11 15 1.3

F 2 9.30 2.74 70.52 0.26 0.52 75.45 58.54 46.11 15 1.3
I 3 18.59 4.77 74.32 0.26 0.40 76.12 51.21 46.77 11 1.0
R 4 18.59 7.04 62.15 0.24 0.40 63.77 40.69 27.21 11 1.2

Average values 69.38 72.70 52.25 41.55 1.2
1 9.30 2.45 73.62 0.26 1.67 91.38 72.32 50.58 7 1.6

H 2 18.33 4.49 75.53 0.26 1.67 84.44 64.70 50.58 5 1.4
A 3 18.33 4.49 75.53 0.52 0.97 80.27 72.48 51.84 4 1.5
L 4 18.33 6.97 61.98 0.52 0.97 66.32 57.14 25.00 4 1.5

Average values 71.67 80.60 66.66 44.50 1.5

Average values 70.52 75.04 59.59 43.29 1.3

159

www.manaraa.com

shown in Table 6.3 for different resource constraints. The average results is shown in Fig. 6.7 for

visual inspection. The results take into account the power or energy consumptions in overheads,

such as level converters and dynamic clocking unit. This indicates that the scheduling scheme

could achieve significant reductions in peak power, peak power differential, average power and

total energy with reasonable time penalties. The time penalty for the benchmarks circuits (ARF

and HAL) were relatively high. For many cases, CPF-Scheduler could reduce energy and power

even without any time penalty or even with gain in time. This happens when the performance

degradation due to multiplications in the critical path are adequately compensated by the number

of ALU operations in the critical path. For this to happen, the ALU operations should be larger

than or equal to the number of multiplications in the critical path. This is the case for most of the

schedules obtained for the EWF and FIR benchmarks indicated by the time ratio (
� ¡) of less than

or equal to one.

For the above experimental set up, we plotted the power consumption per cycle, over all the

control steps (clock steps) for different benchmarks in Fig. 6.3,6.4, 6.5 and 6.6 for resource con-

straints RC1, RC2, RC3 and RC4, respectively. The curves labeled as ”S” correspond to the profile

when the schedule is operated at a single frequency (which is the maximum frequency of the slow-

est operator, the multiplier) and single voltage. The profiles labeled as ”D” correspond to the case

when dynamic clocking and multiple voltage scheme are used. The effectiveness of the proposed

scheduling scheme is obvious from the figures. Since the $�%'& is a complex function consisting

of several parameters, it is difficult to accurately quantify the impact of a specific parameter.

We also performed experiments with three voltage levels (������9�:h�A�Ü¼�9�: Z � Z 9) and four frequency

levels. The results could improve within the range of ��d[�4"�� in terms of power or energy reduc-

tions. However, the time penalty increased by �7��� . It is to be noted that the number of allowable

frequency levels should be as close to the number of allowable voltages in order to keep the time

penalty within a reasonable limit. We performed the same set of experiments for the CPF model

2 (Eqn. 6.19) in which the cycle difference power is modeled as cycle-to-cycle power gradient.

The experimental results for different benchmarks are shown in Table 6.4 for different resource

constraints using model 2 and the average data presented in Fig. 6.8. The results take into account

160

www.manaraa.com

0 5 10 15 20
0

5

10
(1) ARFS

D

control steps (c) −>
cy

cl
e

po
w

er
 (

P
c)

−
>

0 5 10 15 20
0

5

10
(2) BPFS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 10 20 30
0

5

10
(3) DCT
S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 10 20 30
0

5

10
(4) EWF

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15
0

5

10
(5) FIRS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10
(6) HALS

D

control steps (c) −>
cy

cl
e

po
w

er
 (

P
c)

−
>

Figure 6.3. Cycle Power Consumptions for Resource Constraint RC1

0 5 10 15
0

5

10

15

20
(1) ARFS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15 20
0

5

10

15

20
(2) BPFS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 10 20 30
0

5

10
(3) DCT

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 10 20 30
0

5

10

15

20
(4) EWFS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15
0

5

10
(5) FIRS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

1 2 3 4 5
0

5

10

15

20
(6) HALS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

Figure 6.4. Cycle Power Consumptions for Resource Constraint RC2

161

www.manaraa.com

0 5 10 15
0

5

10

15

20

(1) ARFS

D

control steps (c) −>
cy

cl
e

po
w

er
 (

P
c)

−
>

0 2 4 6 8 10
0

5

10

15

20
(2) BPFS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15
0

5

10

15

20
(3) DCT

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15 20
0

5

10

15

20
(4) EWF

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15
0

5

10

15

20

(5) FIRS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

1 2 3 4
0

5

10

15

20

(6) HALS

D

control steps (c) −>
cy

cl
e

po
w

er
 (

P
c)

−
>

Figure 6.5. Cycle Power Consumptions for Resource Constraint RC3

0 5 10 15
0

5

10

15

20
(1) ARFS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 2 4 6 8 10
0

5

10

15

20
(2) BPF

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15
0

5

10

15

20
(3) DCT

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15 20
0

5

10

15

20
(4) EWF

S

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

0 5 10 15
0

5

10

15

20
(5) FIRS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

1 2 3 4
0

5

10

15

20
(6) HALS

D

control steps (c) −>

cy
cl

e
po

w
er

 (
P

c)
−

>

Figure 6.6. Cycle Power Consumptions for Resource Constraint RC4

162

www.manaraa.com

Table 6.4. Power Estimates for Different Benchmarks (using Model 2)

C Power reduction details, Energy savings, Number of clock cycles and Time penalty
K R %u ÷ %u � s¶%v % l ÷ % l � s¶Ä % sV% s¶; p � ¡
T C .bá � 0 .bá � 0 (%) .bá � 0 .bá � 0 (%) (%) (%)
1 2 3 4 5 6 7 8 9 10 11 12

1 9.30 2.64 71.58 0.26 0.52 76.54 71.99 48.64 18 1.6
A 2 18.33 4.68 74.49 0.26 0.52 77.01 68.91 48.64 13 1.4
R 3 18.59 4.74 74.49 0.26 0.52 76.47 71.35 49.87 11 1.5
F 4 18.59 7.23 61.13 0.26 0.52 63.42 56.77 24.34 11 1.5

Average values 70.42 73.36 67.25 42.87 1.5
1 9.30 2.40 74.15 0.26 0.52 79.18 66.48 47.74 17 1.3

B 2 18.33 4.44 75.80 0.26 0.52 78.34 56.67 47.74 17 1.2
P 3 18.59 4.74 74.99 0.52 1.35 81.23 73.26 49.48 9 1.4
F 4 18.59 7.23 61.13 0.52 0.87 64.84 64.38 32.72 9 1.4

Average values 71.52 78.78 65.20 44.42 1.3
1 9.30 2.64 71.58 0.26 0.52 76.54 52.25 44.02 29 1.1

D 2 9.30 2.64 71.58 0.26 0.52 76.54 52.25 44.02 29 1.1
C 3 18.59 4.74 74.49 0.26 0.40 76.29 68.68 44.66 15 1.4
T 4 18.59 7.47 59.85 0.26 0.40 61.44 66.21 40.31 15 1.4

Average values 69.38 72.70 59.85 43.25 1.2
1 9.30 2.40 74.15 0.26 0.52 79.18 42.22 45.43 27 0.9

E 2 18.07 4.07 77.49 0.26 0.52 80.09 34.42 41.70 27 0.9
W 3 18.07 4.07 77.49 0.26 0.40 79.38 55.29 41.32 16 1.2
F 4 18.07 6.55 63.75 0.26 0.40 65.49 50.50 35.03 16 1.2

Average values 73.22 76.03 45.60 40.87 1.1
1 9.30 3.01 67.62 0.26 0.52 72.46 56.30 43.27 15 1.3

F 2 9.30 3.91 57.99 0.26 0.52 62.55 56.36 43.27 15 1.3
I 4 18.59 5.04 72.87 0.26 0.40 74.64 48.61 48.61 11 1.0
R 5 18.59 7.53 59.51 0.24 0.40 61.09 24.70 17.86 11 1.2

Average values 64.50 69.69 46.49 38.25 1.2
1 9.30 2.40 74.15 0.26 1.48 89.75 72.62 51.11 7 1.6

H 2 18.33 4.44 75.80 0.26 1.48 83.62 65.08 51.11 5 1.4
A 4 18.33 4.44 75.80 0.52 0.87 79.99 72.68 52.20 4 1.5
L 5 18.33 6.92 62.65 0.52 0.87 66.04 57.34 25.35 4 1.5

Average values 72.10 79.85 66.93 44.94 1.5

Average values 70.19 75.07 58.55 42.43 1.3

163

www.manaraa.com

1 2 3 4 5 6
0

20

40

60

80

Different Benchmark Circuits −>

P
ea

k
P

ow
er

 R
ed

uc
tio

n
(%

)
−

>

1 2 3 4 5 6
0

20

40

60

80

100

Different Benchmark Circuits −>

P
ea

k
P

ow
 D

iff
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5 6
0

10

20

30

40

50

60

70

Different Benchmark Circuits −>

A
vg

 P
ow

er
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5 6
0

10

20

30

40

50

Different Benchmark Circuits −>

E
ne

rg
y

R
ed

uc
tio

n
(%

)
−

>

Figure 6.7. Percentage Average Reduction for Benchmarks using Model1

the power or energy consumptions due to the overheads. The results indicate that the energy and

power reduction were similar with small differences, but there were no changes in terms of time

penalty. We conclude that the minor difference is due to the fact that the quantitative difference

between the values of (@i �ji� ��@ Þ %=dQ% � Þ) and (@i ´ @ �ji ´ @� ��@ Þ % � ³ @Çdæ% � Þ) are not significant. We

did not provide the cycle power plot for this model since it was almost the same as that of model 1.

6.4 Conclusions

For deep submicron and nanometer technology designs for low power battery driven systems,

simultaneous minimization of total energy and transient power is beneficial. The CPF parameter

defined and used in this work essentially facilitates such simultaneous optimization. The datapath

scheduling algorithm described in this paper is particularly useful for synthesizing data intensive

application specific integrated circuits. The algorithm attempts to optimize energy and power while

keeping the time penalty at minimum. The CPF-Scheduler algorithm assumes the number of dif-

164

www.manaraa.com

1 2 3 4 5 6
0

20

40

60

80

Different Benchmark Circuits −>

P
ea

k
P

ow
er

 R
ed

uc
tio

n
(%

)
−

>

1 2 3 4 5 6
0

20

40

60

80

Different Benchmark Circuits −>

P
ea

k
P

ow
 D

iff
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5 6
0

10

20

30

40

50

60

70

Different Benchmark Circuits −>

A
vg

 P
ow

er
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5 6
0

10

20

30

40

50

Different Benchmark Circuits −>

E
ne

rg
y

R
ed

uc
tio

n
(%

)
−

>

Figure 6.8. Percentage Average Reduction for Benchmarks using Model2

ferent types of resources at each voltage level and the number of allowable frequencies as resource

constraints. The work provides a unified framework for simultaneous multicost space metric op-

timization of different energy and power components in CMOS circuit design. Future work could

address leakage reduction and interconnect issues. The effectiveness of the CPF in the context of a

pipelined datapath and control intensive applications also needs to be investigated.

165

www.manaraa.com

CHAPTER 7

TRANSIENT POWER MINIMIZATION

In the previous chapter, we proposed a framework for simultaneous reduction of the four pa-

rameters through datapath scheduling. A new parameter called ”cycle power function” is defined

that captures the four parameters and it is minimized using heuristic based scheduling algorithm.

In this chapter, we modify the non-linear $'%'& (denoted as $'%'&V() so that integer linear program-

ming (ILP) can be used for its minimization during datapath scheduling. The model for $'%'&
takes into consideration the effect of switching activity on the power consumption of functional

units. The first scheme, CPF-MVDFC combines both multiple supply voltages (MV) and dynamic

frequency clocking (DFC) for $'%'& (minimization [170], while the second scheme, CPF-MVMC

uses multiple supply voltages (MV) and multicycling (MC) [171]. We conducted experiments

on selected high-level synthesis benchmark circuits for various resource constraints and estimated

power, energy and energy delay product for each of them. Experimental results show that signifi-

cant reductions in power, energy and energy delay product can be obtained.

The rest of the chapter is organized as follows. We discuss the related works in the next section.

We define, the cycle power profile function as the equally weighted sum of normalized mean cy-

cle power and normalized mean cycle differential power followed by the analysis of the functions

($�%'& and $�%'&^(). Since, the $�%^&^(function is non-linear and we aim at using linear program-

ming for its minimization, we discuss the procedures to handle standard nonlinearities using linear

programming. The ILP formulations for $'%'&¶(minimization using multiple supply voltages and

dynamic frequency clocking is discussed, followed by the ILP formulations for $'%'&Ñ(minimiza-

tion using multiple supply voltages and multicycling. Then, we describe the ILP-based scheduling

algorithm followed by the experimental results and conclusions.

166

www.manaraa.com

7.1 Modified Cycle Power Function

In this section, we redefine the parameter called cycle power function ($'%'&) which captures

the peak power, the peak power differential and the average power of the datapath circuit. It should

be noted that $�%^& captures the transient power characteristics of the circuit and the minimization

of $�%^& using multiple voltages could lead to reduction of energy. In this section, we define$�%^& , study its nonlinear behavior and modify it so that we can use integer linear programming

(ILP) for its minimization. The datapath is represented as a sequencing data flow graph (DFG). The

definitions and notations used in this chapter are the same as that of the previous chapter (Table

6.1.

Following the same steps as in the previous chapter, the cycle power function $'%'& is modeled

as an equally weighted sum of the normalized mean cycle power (%�F 5x{ l) and the normalized mean

cycle difference power (ÄY%�F 5x{ l) as given below.

$'%'&Ñ.c%�F 5x{ l^:<Ä %�F 5x{ l
0 %�F 5x{ lQOQÄ %�F 5x{ l (7.1)

The $�%^& has a value in the range [0,2]. In terms of peak cycle power (% � kh) and peak cycle

difference power (ÄY% � kh), $�%'& can be expressed as :

$'%'&

 � ©b§ � O �
�
 � ©b§ � ñ¶ í ¶ª ð�ñ
 ª
 � ©b§ � O ñ¶ í ¶ª ð�ñ ¼
 ´
 ª ¼�
 � © § � (7.2)

Thus, the cycle power function ($�%'&) can be written as follows.

$�%'& ñ¶ í ¶ª ð#ñ¯íyx ªï�ð#ñ ï� ª � ï� ª � zï� ª � ªl�k<� Ý í x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ß ¸ ª
O ñ¶ í ¶ª ð�ñ ÝÏººº ñ¶ í ¶ª ð#ñ Ý í x ªï�ð�ñ ï� ª � ï� ª �azï� ª � ª ß ´ í x ªï�ð�ñ ï� ª � ï� ª �azï� ª � ª ººº ßl�kh� Ý ººº ñ¶ í ¶ª ð�ñ Ý í x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ß ´ í x ªï�ð#ñ ï� ª � ï� ª �Gzï� ª � ª ººº ßu¸ ª

(7.3)

The above function (Eqn. 7.3) can serve as the objective function for low power datapath

scheduling. The minimization of this objective function using multiple supply voltages, dynamic

frequency clocking and multicycling can reduce both power and energy. From the Eqns. 7.2, and

167

www.manaraa.com

7.3, we make following observations about the cycle power function ($�%'&). The $'%'& is a non-

linear function. It is a function of four parameters, such as, average power (%), peak power (% � kº),
average difference power (Ä %) and peak difference power (Ä % � kº). The absolute function (ý�3¿Á
or Þ1Þ) in the numerator (of Eqn. 7.3) contributes to the nonlinearity. The complex behavior of the

function is also contributed by the denominator parameters, % � kh and ÄY% � kh .
We need to develop scheduling algorithms that accept, an unscheduled DFG, the resource/time

constraints, switching activity information, load capacitance, voltage levels and the number of

allowable frequency levels as input parameters. For optimum minimization of the function, such

an algorithm has to be based on non-linear optimization techniques, which are of large time and

space complexity. In this work, we aim at developing integer linear programming (ILP) based

model for minimization of the $�%'& . We alter the $�%'& in order to simplify the ILP-based model.

It is known that the denominator parameters, % � kº equals to áµý�Ï � % � � & � and the Ä % � kº equals

to áµý�Ï � Þ %�d�% � Þ � & � . It is evident that Þ %�d�% � Þ is upper bounded % � for all control steps ¤ , sinceÞ %8dà% � Þ is a measure of mean difference error of % � . Thus, we conclude that Ä % � kh is upper

bounded by % � kh . We modify the $�%^& by substituting Ä % � kº with % � kº and define modified$�%^& (denoted as $'%'&^() as follows.

$�%'&^(

 � ©b§ � O �

 � ©b§ �
 ³ �

 � © § � ñ¶ í ¶ª ð�ñ
 ª ³ ñ¶ í ¶ª ð#ñU¼
 ´
 ª ¼
 � ©b§ � ñ¶ í ¶ª ð#ñ�í x ªï�ð#ñ ï� ª � ï� ª �{zï� ª � ªl�k<� Ý íyx ªï�ð#ñ ï� ª � ï� ª � zï� ª � ª ßw¸ ª
O ñ¶ í ¶ª ð�ñ Ý ººº ñ¶ í ¶ª ð#ñ Ý í¦x ªï�ð�ñ ï� ª � ï� ª � zï� ª � ª ß ´ íyx ªï�ð�ñ ï� ª � ï� ª � zï� ª � ª ººº ßlok<� Ý í x ªï�ð�ñ ï� ª � ï� ª � zï� ª � ª ß ¸ ª

(7.4)

Unlike $�%'& , the $�%'& (is dependent on three factors, % , % � kh and Ä % . The absence of Ä % � kh ,
in the denominator helps in reducing the complexity of the ILP formulations (which will be dis-

cussed in next section) to a great extent. We minimize the ”modified cycle power function” ($�%^& ()
instead of $�%'& using the ILP-based model.

168

www.manaraa.com

The power models developed in Eqn. 7.3 for the $�%^& use parameters, such as �Tmb® � , $om ® � , 9�mb® �
and r � . The model can accomodate both the look-up table based energy (power) models and energy

(power) macro-models. The generic model can also help in easy integration of a $�%'& model in

behavioral synthesis tool that uses both a behavioral power estimator and a datapath scheduler.

Using the dynamic energy model proposed in [123], the effective switching capacitance can be

expressed as,

�gm�$�m $tw�õ m .2�gm @ :h�gm C 0 (7.5)

Here, ��m and $�m are the parameters corresponding to the functional unit & M m as defined before.$tw�õ m is a measure of the effective switching capacitance of the functional unit & M m , which is a

function of � m @ and � m C ; � m @ and � m C are the average switching activities on the first and second

input operands of resource & M m . It should be noted that in the above switching model, (in Eqn. 7.5)

the input pattern dependencies can be handled. Moreover, the generic $'%'& model can be easily

tuned to handle any of the four modes of datapath circuit operation, such as, (i) single supply volt-

age and single frequency, (ii) multiple supply voltages and single frequency, (iii) multiple supply

voltages and dynamic frequency and (iv) multiple supply voltage and multicycling. For the single

supply voltage and single frequency scheme, 9�mb® � and r � is the same for all ¤ , while for multiple

supply voltage and multicycling r � is same for all ¤ . Using Eqn. 7.5, we rewrite Eqn. 7.4 as,

$�%'&'(ñ¶ í ¶ª ð#ñ íyx ªï�ð�ñ � ¨ � ï� ª � zï� ª � ªl�k<� Ý í x ªï�ð#ñ � ¨ � ï� ª �{zï� ª � ª ßw¸ ª
O ñ¶ í ¶ª ð#ñ Ý ººº ñ¶ í ¶ª ð#ñ Ý í x ªï�ð#ñ � ¨ � ï� ª �azï� ª � ª ß ´ í x ªï�ð�ñ � ¨ � ï� ª �azï� ª � ª ººº ßlok<� Ý íyx ªï�ð�ñ � ¨ � ï� ª �azï� ª � ª ßu¸ ª

(7.6)

The notation $Çw�õ mb® � represents $Çw/õ m for the functional unit & M m active in control step ¤ . We use

the above equation (Eqn. 7.6) as the objective function for our scheduling algorithm. ��m @ and ��m C
are estimated using behavioral simulation of a DFG with a set of input vectors [167, 168, 169]. A

look-up table is constructed that stores the $Pw/õ values for (� @ and � C) combinations for different

types of functional units, such as multipliers and ALUs. We use interpolation to find the $'w�õ values

for the (� @ and � C) combinations that are not available in the look-up table.

169

www.manaraa.com

7.2 Modeling of Non-linearities

The ”modified cycle power function” ($'%'& () discussed in the previous section, is a non-linear

function. The nonlinearity is because of the absolute function (ý�3¿Á or Þ1Þ) and also because of the

fractional form of the function itself. The ILP formulations need to handle these two forms of

non-linearity. We first address the transformations required to derive linear models of the nonlinear

functions. Let us represent the general linear programming model as follows [172] :

Minimize : � ü ¤}üÇ	TÏAü
Subject to : � ü ý�mÔüt	�ÏAü�ÍÐ3ºmx: | ¥Ï ü *à"#: |<0 (7.7)

where, ¤Bü , ý�mÔü�:Ñ3ºm are known constants and Ï�ü are the decision variables.

7.2.1 LP Formulation Involving Sum of Absolute Deviations

The general form of this type of programming can be represented as given below [173, 174].

Minimize : � m Þ 8DmBÞ
Subject to : 8 m Oà� ü ý mÜü 	�Ï ü ÍÐ3 m : | ¥ÏAüÒ*["#: |«0

where, 8Dm , is the deviation between the prediction and observation. The Þ 8#m<Þ is non-linear because

of absolute function. This can be linearized using the following transformation.

Let, 8�m be represented as the difference of two non-negative variables,

8DmÐ 8 @m dÓ8 Cm (7.9)

170

www.manaraa.com

Using these variables, we can rewrite the LP formulation in Eqn. 7.8 as follows.

Minimize : � m ºº 8 @m dÓ8 Cm ºº
Subject to : 8 @m dÔ8 Cm O � ü ý mÔü 	TÏ ü ÍÐ3 m : | ¥Ï#ün*à"#: |<08 @m :�8 Cm *["#: | ¥

(7.10)

If the product of 8 @m and 8 Cm is zero, then,

ºº 8 @m dÓ8 Cm ºº ºº 8 @m ºº O ºº 8 Cm ºº 8 @m Oo8 Cm (7.11)

Using the above, we can write the LP formulation expressed in Eqn. 7.10 as shown below.

Minimize : � m 8 @m O+8 Cm
Subject to : 8 @m dÔ8 Cm O � ü ý�mÔüt	TÏ#ü'ÍÐ3ºmx: | ¥Ï#ün*à"#: |<08 @m :�8 Cm *["#: | ¥

(7.12)

The formulations in Eqn. 7.8 and 7.12 are equivalent and the minimization of Eqn. 7.12 will result

in the minimization of Eqn. 7.8.

7.2.2 LP Formulation Involving Fraction

The general expression for the LP formulation involving fractions is considered below [174].

Minimize : í � � � (� �í � f � (� �
Subject to : � ü ý�mÔüt	�ÏAü�ÍÐ3ºmx: | ¥ÏAüq*à"#: |<0 (7.13)

171

www.manaraa.com

where, ¤Bü and 6�ü are known constants and the denominator � ü 6�ü�	tÏ#ü is strictly positive. Let us

assume new variables as follows :

� T ººº 6 T O � ü 6¯üÇ	TÏAü«ººº ´ @ÏAü Õ �Õ S (7.14)

Using the above transformation, the original formulation in Eqn. 7.13 can be modified to the

following.

Minimize : ¤�To	B�TTO � ü ¤ ü 	H� ü
Subject to : � ü ý�mÜüÇ	H�ºü�dÖ3ºmv	H� T ÍÐ3ºm}: | ¥� ü 6 ü 	B� ü Of6ETo	H�T� =�� T :Å�ºü×* "#: |<0

(7.15)

The problems defined in Eqn. 7.13 and 7.15 are equivalent. On solving the problem in Eqn. 7.15,

we substitute, �¿üP �ÏAüo	B� T to get the results for Ï6ü .
Although the ILP formulations get complicated as the objective function described in Eqn. 7.4

consists of both of the above non-linearities, it is much simpler than the ILP-formulation of the

Eqn. 7.3. We observe that the cycle power fluctuation (ÄY% �) corresponds to Þ 8�m}Þ in Eqn 7.8. Ä % �
is a measure of the absolute deviation of cycle power from average power and Ä % is a measure of

mean deviation of the cycle power.

7.3 ILP Formulations to Minimize Cycle Power Function

In this section, we discuss the ILP models for minimization of the ”modified cycle power

function” ($'%'& (). We describe the ILP models for two different scenario of ASIC design. The

first one targets design with multiple supply voltages and dynamic frequency clocking (MVDFC).

The other one targets multiple supply voltages and multicycling (MVMC) based designs. The ILP

models formulated ensure that the dependency constraints and the resource constraints are satisfied.

In order to formulate an ILP based model for Eqn. 7.6 and the scheduling schemes for the DFG,

we use the following notations (Table 7.3).

172

www.manaraa.com

Table 7.1. List of Variables used in ILP Formulations* ¯® � : maximum number of functional units of type � operating
at voltage level > (& M ¯® �)À m : as soon as possible (ASAP) time stamp for the operation � m;�m : as late as possible (ALAP) time stamp for the operation ��m%Ñ./$ w/õ m :B>v: r 0 : power consumption of functional unit & M m at voltage level >
and operating frequency r used by ��m for its executionÏ mb® � ® � ® � : decision variable which takes the value of � if operation ��m
is scheduled in control step ¤ using the functional unit & ¯® �
and ¤ has frequency r �8 m ® � ® C ® l : decision variable which takes the value of � if operation � m is
using the functional unit & ¯® � and scheduled in control steps Ù �Ðá� mb® � : latency for operation �Dm using functional unit operating
at voltage > (in terms of number of clock cycles)

7.3.1 Multiple Voltages and Dynamic Frequency Clocking (MVDFC)

In this subsection, we describe the ILP formulation for minimization of $'%'&Y(using multiple

supply voltages and dynamic frequency clocking. In dynamic frequency clocking [63, 59, 62],

the clock frequency is varied on-the-fly based on the functional units active in that cycle. In this

clocking scheme, all the units are clocked by a single clock line which switches at run-time. The

frequency reduction creates an opportunity to operate the different functional units at different volt-

ages, which in turn, helps in further reduction of power.

Objective Function : The objective is to minimize the modified cycle power function described in

Eqn. 7.4 of the whole DFG over all control steps.

Minimize : $'%'&1((7.16)

Using Eqn. 7.4, this can be restated as :

Minimize :
ñ¶ í ¶ª ð�ñ
 ª ³ ñ¶ í ¶ª ð#ñ ¼
 ´
 ª ¼
 � ©b§ � (7.17)

173

www.manaraa.com

This objective function has the two types of non-linearities mentioned in the previous section. We

first remove the non-linearity introduced because of the fraction by putting the denominator as a

constraint. Then, the problem in Eqn. 7.17 transformed to the one given below.

Minimize : @i � i� ��@ % � O @i � i� ��@ Þ %Wd×% � Þ
Subject to : Peak power constraints

(7.18)

However, this transformed problem still has the non-linearity in it because of the absolute function.

This can be converted to an equivalent problem using the transformation suggested in the previous

section.

Minimize : @i � i� ��@ %���O @i � i� ��@ .c%¬O %��h0
Subject to : Modified peak power constraints

(7.19)

The ”peak power constraint” in Eqn. 7.18 and the ”modified peak power constraint” in Eqn. 7.19

will be discussed in later part of the subsection. The problem expressed in Eqn. 7.19 is simplified

to :

Minimize : � �i � �ji� ��@ % �
Subject to : Modified peak power constraints

(7.20)

Using the decision variables, the objective function is formulated as,

Minimize : � � � m-,�D � ~ � � � � Ï mb® � ® � ® � 	 � �i � 	T%Y./$tw/õ m :B>v: r 0
Subject to : Modified peak power constraints

(7.21)

Minimize : � � � m),�D � ~ � � � � Ï mb® � ® � ® � 	T% (./$tw�õ m :B>�: r 0
Subject to : Modified peak power constraints

(7.22)

where, % (./$tw/õ m :B>v: r 0 is given by %Ñ./$Çw�õ m :B>�: r 0�	 � �i � .
Uniqueness Constraints : These constraints ensure that every operation �#m is scheduled to one

unique control step within the mobility range (
À m , ;�m) with a particular supply voltage and operat-

174

www.manaraa.com

ing frequency. We represent them as, | ¥ , ��Í ¥ Í¬Ø ,

� � � � � � Ï mb® � ® � ® � � (7.23)

Precedence Constraints : These constraints guarantee that for an operation �#m , all its predecessors

are scheduled in an earlier control step and its successors are scheduled in a later control step.

These are modeled as, | ¥ :�0D:<�DmP1µ%��}L�6 5 � ,
� � � � � ° ïf � ÷ ï 6^	TÏ m ® f ® � ® � d � � � � � ° �� � ÷ � LÇ	TÏ üh® � ® � ® � Í d'� (7.24)

Resource Constraints : These constraints make sure that no control step contains more than & ¯® �
operations of type � operating at voltage > . These can be enforced as, |u¤ , ��Í[¤�Í p and |u> ,

� m),�D � ~ � � Ï mb® � ® � ® � Í * ¯® � (7.25)

Frequency Constraints : This set ensures that if a functional unit is operating at a higher voltage

level then it can be scheduled in a lower frequency control step, whereas, a functional unit is op-

erating at lower voltage level then it can not be scheduled in a higher frequency control step. We

write these constraints as, | ¥ , �'Í ¥ Í¬Ø , |�¤ , �'Í[¤�Í p , if r ¹ > , then Ï mb® � ® � ® � �" .
Peak Power Constraints : As discussed before, with reference to the Eqn. 7.17 and 7.18, these

constraints are introduced to eliminate the fractional non-linearity of the objective function. These

constraints ensure that the maximum power consumption of the DFG does not exceed % � kh for

any control step. We enforce these constraints as follows, |u¤ , �'Íà¤
Í p ,

� m),�D � ~ � � � � Ï mb® � ® � ® � 	T%Ñ./$tw�õ m :B>�: r 0 Í % � kº (7.26)

175

www.manaraa.com

Modified Peak Power Constraints : To eliminate the non-linearity introduced due to the absolute

function, we modify the above constraints, as outlined in Eqn. 7.18 and 7.19. The peak power

constraints in Eqn. 7.26 is modified as, |�¤ , �'Í[¤�Í p ,

@i � � � m-,�D � ~ � � � � Ï mb® � ® � ® � 	T%Ñ./$ w�õ m :B>�: r 0d � m),�D � ~ � � � � Ï mb® � ® � ® � 	�%Y./$tw/õ m :B>v: r 0tÍà% (� kº (7.27)

The % (� kº is a modified peak constraint which is added to the objective function and minimized

alongwith it.

7.3.2 Multiple Voltages and Multicycling (MVMC)

In this subsection, we describe the ILP formulations based on the modified cycle power func-

tion ($'%'& () using multiple supply voltages and multicycling. In this scheme, the functional units

are operated at multiple supply voltages. The functional units operating at lower voltages may need

to be active in more than one consecutive control steps to complete execution.

Objective Function : The objective is to minimize the $�%'&Ñ(for the entire DFG. Using Eqn.

7.4, this can be represented as :

Minimize : $�%^&1(ñ¶ í ¶ª ð#ñ
 ª ³ ñ¶ í ¶ª ð#ñ�¼
 ´
 ª ¼
 � ©b§ � (7.28)

As discussed in the previous subsection, this objective function has two types of non-linearities,

which are because of the absolute function and the fractional form. The fractional non-linearity is

removed by introducing the denominators as a constraint. The corresponding constraints are known

as ”peak power constraints”. We remove the absolute function non-linearity by modifying the peak

power constraints which give rises to ”modified peak power constraints”. Thus, the problem in

176

www.manaraa.com

Eqn. 7.28 is transformed to the following.

Minimize : @i � i� ��@ % � O @i � i� ��@ .c%¬O % � 0
Subject to : Modified peak power constraints

(7.29)

The ”peak power constraint” and the ”modified peak power constraint” are discussed in the later

part of the subsection. The problem in Eqn. 7.29 is simplified to :

Minimize : � �i � �ji� ��@ % �
Subject to : Modified peak power constraints

(7.30)

Using the decision variables, the above LP objective function is formulated as,

Minimize : � C � m),�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	 � �i � %Y./$tw/õ m :B>v: r � C 0
Subject to : Modified peak power constraints

(7.31)

where, r � C is the operating frequency level of the datapath circuit in multicycling mode.

Minimize : � C � m),�D � ~ � � 8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô 	�% (./$tw�õ m :B>�: r � C 0
Subject to : Modified peak power constraints

(7.32)

where, % (./$ w/õ m :B>v: r � C 0� � �i � 	T%Y./$ w/õ m :B>v: r � C 0 , are modified power values.

Uniqueness Constraints : These constraints ensure that every operation �Am is scheduled in appro-

priate control steps within the mobility range (
À m , ;�m) with a particular supply voltage. Depending

on the supply voltage it may be operated at more than one clock cycle. We represent them as, | ¥ ,�'Í ¥ Í¬Ø ,

� � � ÷ ï ³�° ï ³ @ ´ n ï� ~C � ÷ ï 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô � (7.33)

When the operators are computed at the highest voltage, they are scheduled in one unique control

step, whereas, when they are to be operated at lower voltages they need more than one clock cycle

for completion. Thus, for lower voltage, the mobility is restricted.

177

www.manaraa.com

Precedence Constraints : These constraints guarantee that for an operation �#m , all its predeces-

sors are scheduled in earlier control step and its successors are scheduled in later control step.

These constraints should also take care of the multicycling operations. These are modelled as,| ¥ :�0�:<��m�1µ%��}L�6 5 � ,
� � � ° ïC � ÷ ï . Ù O � mb® � d �q0�	B8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô d � � � ° �C � ÷ � Ù 	H8 üh® � ® C ® ó C ³ n � ~ ´ @ ô Í d'� (7.34)

Resource Constraints : These constraints make sure that no control step contains more than & ¯® �
operations of type � operating at voltage > . These can be enforced as, |v> and | Ù , �'Í Ù Í p ,

� m),�D � ~ � C 8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô Í * ¯® � (7.35)

Peak Power Constraints : As discussed earlier with reference to Eqn. 7.28 and 7.29, these con-

straints are enforced to eliminate the fractional non-linearity of the objective function. We enforce

these constraints as follows, | Ù , �'Í Ù Í p ,

� m),�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	�%Ñ./$tw�õ m :B>�: r � C 0 Í % � kº (7.36)

Modified Peak Power Constraints : These constraints are introduced to eliminate the absolute func-

tion non-linearity of the objective function. These constraints can be enforced as, | Ù , ��Í Ù Í p ,

@i � C � m),�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	�%Ñ./$tw�õ m :B>�: r � C 0d � m),�D � ~ � � 8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô 	�%Y./$tw/õ m :B>�: r � C 0tÍà% (� kº (7.37)

where, % (� kh is the modified peak power constraint which is also minimized as a part of the objec-

tive function.

178

www.manaraa.com

7.4 ILP-Based Scheduling Algorithm

In this section, we discuss the solutions for the ILP formulations obtained in the previous

section and develop scheduling algorithms for both MVDFC and MVMC schemes. The target

architecture model assumed for the scheduling schemes is from [65]. Each functional unit has

a register and a multiplexor associated with it. The register and the multiplexor operate at the

same voltage level as that of the functional unit. Level converters are used when a low-voltage

functional unit drives a high-voltage functional unit [65, 95]. A controller decides which of the

functional units are active in each control step and those that are not active are disabled using the

multiplexors. For MVDFC scheme, the controller has a storage unit to store cycle frequency index

(¤ ru¥ �) values obtained from scheduling. This serves as the clock dividing factor for the dynamic

clocking unit. The cycle frequency r � is generated dynamically and a functional unit operating at

one of the supply voltages is activated.

The inputs to the algorithm are an unscheduled data flow graph (UDFG), the resource con-

straints, the number of allowable voltage levels (
� �), the number of allowable frequencies (

� �),
the delay of each resource (6 DGF), the multiplexor (6 O A7�), the register (6 : � ö) at different voltage

levels. The delays of level converters (6 � 5 F �) is represented in the form of a matrix that shows the

delay in converting one at voltage level 9 m to another voltage level 9 ü (where, both 9 m :º9 ü 1¸9 n Ë).

The resource constraint includes the number of ALUs and multipliers at different voltage levels96m (where, 96mm1[96n<Ë). The scheduling algorithm determines the r�¢ kºw � , ¤ ru¥ � time stamp for each

operation, and voltage level such that the function $'%'& ((Eqn. 7.6) is minimum.

The ILP based scheduler which minimizes the modified cycle power function $�%'&Y(of the

DFG is outlined in Fig. 7.1. In step 1, the scheduler constructs a look-up table for effective

switching capacitance for known values of the average switching activity pair as described in Eqn.

7.5. In step 2, the scheduler determines the switching activities at the inputs of each node by using

behavioral simulation of DFG. For this purpose, a different set of application specific input vectors

(having different correlations) are given at the primary inputs of the DFG and average switching

activity at each inputs of other nodes are calculated [167, 168, 169]. It should be noted that if the

look-up table (in step 1) does not have the switching capacitance for an average switching activity

179

www.manaraa.com

Input : UDFG, resource constraints,
� � ,

� � , all 96mP1H9�n�Ë , 6EDGF , 6 O Aq� , 6 : � ö , 6 � 5 F �
Output : scheduled DFG, r�¢ kºw � , p , ¤ ru¥ � , power, energy and delay estimates

Step 1 : Construct a look up table for effective switching capacitance.
Step 2 : Calculate the switching activities at each node through behavioral simulation.
Step 3 : Find ASAP schedule for the UDFG.
Step 4 : Find ALAP schedule for the UDFG.
Step 5 : Determine the mobility graph of each node.
Step 6 : Modify the mobility graph for MVMC.
Step 7 : Model the ILP formulations of the DFG using AMPL.
Step 8 : Solve the ILP formulations using LP-Solve.
Step 9 : Find the scheduled DFG.
Step 10 : Determine the cycle frequencies (r �), r�¢ kºw � and ¤ ru¥ � for MVDFC scheme.
Step 11 : Estimate the power and energy consumptions of the scheduled DFG.

Figure 7.1. Scheduling for $'%'&-(Minimization

value (in step 2), then the scheduler uses interpolation techniques to find the same. The third step

is to determine the as soon as possible (ASAP) time stamp of each operation. The fourth step is

the determination of the as late as possible (ALAP) time stamp of each vertex for the DFG. The

ASAP time stamp is the start time and the ALAP time stamp is the finish time of each operation.

These two time stamps provide the mobility of an operation and the operation must be scheduled

within this mobility range. This mobility graph needs to be modified for the MVMC scheme. The

ILP formulations constructed based on the models described in section 7.3. The scheduler uses

the modeling language AMPL to model the ILP formulations [166]. At this step, we calculate the

power consumption of the functional units as follows. The operational delay of a functional unit

is assumed as (6 DGF OI6 O A7� Of6 : � ö OI6 � 5 F �). For the MVMC scheme the operating frequency is

the frequency corresponding to the operational delay at the highest operating voltage of multiplier

unit. On the other hand, for MVDFC scheme, the operating frequency of a functional unit is

calculated based on these operational delay using the formulas given in [48]. It is assumed to

be the inverse of operational delay of a functional unit at corresponding supply voltage. We get

the switching capacitance from step 1 and step 2, and the power values are calculated whenever

180

www.manaraa.com

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

(a) ASAP Schedule for EXP DFG

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

(b) ALAP Schedule for EXP DFG

Figure 7.2. ASAP and ALAP Schedule for Example DFG (used to find Mobility Graph)

necessary for different operating voltages and frequencies. The scheduled DFG is obtained after

the ILP formulation is solved using LP-Solve. Then, the scheduler determines the r6¢ kºw � , ¤ ru¥ � and

cycle frequency (r �) using the methods proposed in [48] based on the delay of each cycle. Finally,

the power consumption, energy consumption and the energy delay product of the scheduled DFG

are calculated.

7.4.1 CPF-MVDFC Scheduling Scheme

We illustrate the solution for the ILP formulation in the MVDFC case, with the help of the

DFG shown in Fig. 7.2. The ASAP schedule is shown in Fig. 7.2(a) and the ALAP schedule is

shown in Fig. 7.2(b). From the ASAP and ALAP schedules, we obtained the mobility graph which

is Fig. 7.3(a). We get the ILP formulations using this mobility graph. We solved the formulation

using LP-solve and based on the results, we obtained the scheduled DFG shown in Fig. 7.3(b) for

the resource constraint (RC5), two multipliers at �A�Ü¼�9 and one ALU operating at
Z � Z 9 . Similarly,

other schedules can be obtained for different resource constraints.

181

www.manaraa.com

1 2 43 5 6
* * * + ++

(a) Mobility Graph

*
2

*

+
5

3

1
*

NOP

NOP Source0

Sink7

+

+

3.3V

3.3V
4

3.3V
6

2.4V2.4V

2.4V

(b) Final Schedule

Figure 7.3. Mobility Graph and Final Schedule for Example DFG for RC5 using MVDFC

7.4.2 CPF-MVMC Scheduling Scheme

We illustrate the solution for the ILP formulations of the MVMC case, using the DFG shown

in Fig. 7.2. The ASAP schedule is shown in Fig. 7.2(a) and the ALAP schedule is shown in

Fig. 7.2(b). From the ASAP schedule (Fig. 7.2(a)) and the ALAP schedule (Fig. 7.2(b)), we

obtained the mobility graph shown in Fig. 7.4(a). This mobility graph is different from that shown

in Fig. 7.3(a). In the MVMC case, the mobility graph considers the multicycle operations. In this

illustration, we assume that we have two operating voltage levels, and when the multipliers are

operated at the lower voltage, they take two clock cycles. It should be noted that the mobility graph

will depend on the number of operating voltages and the assumed operating frequency. We solved

the ILP formulation using LP-solve and based on the results we obtained the scheduled DFG shown

is Fig. 7.4(b) for the resource constraint (RC5), two multipliers at �A�Ü¼�9 and one ALUs operating

at
Z � Z 9 .

182

www.manaraa.com

* * * + + +
1 2 3 4 5 6

c1

c2

c3

c4

c0

(a) Mobility Graph

NOP Source0

NOP7 Sink

+

+

4

5

*

+

*

*
3

1

2

2.4V

2.4V

2.4V
3.3V

6

3.3V

3.3V

(b) Final Schedule

Figure 7.4. Mobility Graph and Final Schedule for Example DFG for RC5 using MVMC

7.5 Experimental Results

The ILP based CPF-MVDFC and CPF-MVMC schedulers were tested with five benchmark

circuits :

3 Example circuit (EXP) (8 nodes, 3*, 3+, 9 edges)

3 FIR filter (11 nodes, 5*, 4+, 19 edges)

3 HAL differential equation solver (13 nodes, 6+, 2+, 2-, 1 ¹ , 16 edges)

3 IIR filter (11 nodes, 5*, 4+, 19 edges)

3 Auto-Regressive filter (ARF) (15 nodes, 5*, 8+, 19 edges).

The following notations are used to express results (Table 7.5).

We use the look-up table method presented in Section 7.1 for average switching capacitance

calculation. The look-up table construction consists of two phases, such as input pattern generation

and cell characterization. We generate the primary input signals of different correlations using

183

www.manaraa.com

Table 7.2. List of Variables used to Express the Results% ÷ : peak power consumption (in á �) for single supply voltage
and single frequency scheme% � : peak power consumption (in á �) for multiple supply voltages
and dynamic frequency operation% O : the peak power consumption (in á �) for multiple supply voltages
and multicycle operation% l ÷ : minimum power consumption (in á �) for any cycle
assuming single frequency and single supply voltage%�l � : minimum power consumption (in á �) for any cycle
for dynamic clocking and multiple supply voltage� ÷ : execution time for single frequency� � : execution time for dynamic frequency� O : execution time for multicycling operation; ÷ : total energy consumption (in nano-Joule or ��Å) for
single supply voltage and single frequency scheme; � : total energy consumption (in ��Å) for
multiple supply voltages and dynamic frequency operation; O : total energy consumption (in ��Å) for
multiple supply voltages and multicycle operation% ÷ : average power consumption (in á �) for single supply voltage and single
frequency scheme which is calculated as the mean of the cycle power consumptions% � : average power consumption (in á �) for multiple supply voltages and
dynamic frequency operation, estimated as the mean of the cycle power% O : average power consumption (in á �) for multiple supply voltages and
multicycle operation, calculated as the mean of the cycle power consumptions;^Ä % ÷ : energy delay product (in �4" ´ @ = Joule-sec or r Å�Á) for single supply voltage
and single frequency operation (�; ÷ 	�� ÷);^Ä % � : energy delay product (in r Å�Á) for multiple supply voltage
and dynamic frequency clocking operation (N; � 	�� �);^Ä % O : energy delay product (in r Å�Á) for multiple supply voltage
and multicycle operation (N; O 	�� O)s¶% : percentage peak power reduction, for MVDFC scheme this is defined as,ó
 � t ´
 � v ô
 � t 	��4"D" and for MVMC scheme it is calculated as, ó
 � t ´
 � � ô
 � t 	��4"D"s¶Ä % : percentage differential power reduction, which is calculated asó
 � t ´
 ² t ô ´ ó
 � v ´
 ² v ôó
 � t ´
 ² t ô 	P�4"D" for MVDFC scheme and asó
 � t ´
 ² t ô ´ ó
 � � ´
 ² � ôó
 � t ´
 ² t ô 	��4"D" for MVMC schemes¶% : percentage average power reduction, for MVDFC sheme it is

 t ´
 v
 t 	P�4"D"
and for MVMC scheme it is

 t ´
 �
 t 	��4"D"s¶; : percentage reduction in total energy, is calculated as ° t ´ ° v° t 	��4"D"
for MVDFC scheme and as ° t ´ ° �° t 	��4"D" for MVMC schemes¶;1ÄY% : percentage EDP reduction, calculated as ó ° �
 t ´ ° �
 v ô° �
 t 	��4"D"
for MVDFC scheme and as ó ° �
 t ´ ° �
 � ô° �
 � 	P�4"D" for MVMC scheme

184

www.manaraa.com

the autoregressive moving average (ARMA) model [169]. We perform the characterization of the

physical implementations of the library modules available in [55] by applying the input patterns

generated above for some values of (��m @ :h��m C) pairs. Whenever necessary, we used interpolation

to find the average switching capacitance for any other values of (�Tm @ :h��m C) pairs that do not exist

in the look-up table. It should be noted that larger the size of look-up table, better is the accuracy.

The above generated signals are propagated through different operators in the DFG and the average

switching activities are calculated as described in [169].

Both the scheduling algorithms, CPF-MVDFC and CPF-MVMC were tested using five differ-

ent sets of resource constraints (RC1,RC2,RC3,RC4,RC5) :

(1) multipliers (� at �A�Ü¼�9 and � at
Z � Z 9) and ALUs (� at �A�Ü¼�9 and � at

Z � Z 9),

(2) multipliers (
Z

at �A�Ü¼�9) and ALUs (� at �A�Ü¼�9 and � at
Z � Z 9),

(3) multipliers (� at �A�Ü¼�9) and ALUs (� at
Z � Z 9),

(4) multipliers (� at �A�Ü¼�9 and � at
Z � Z 9) and ALUs (� at

Z � Z 9), and

(5) multipliers (� at �A�Ü¼�9) and ALUs (� at
Z � Z 9).

The reason behind choosing the sets of resource constraints is that it covers a good representive of

types of resources at different operating voltages. The number of allowable voltage levels is two

(�A�Ü¼�9�: Z � Z 9) and maximum number of allowable frequencies being three. The experimental results

for various benchmark circuits are reported in Table 7.3 for CPF-MVDFC scheduling scheme and

in Table 7.4 for CPF-MVMC scheduling scheme. The power/energy estimation include the power

consumption of the overheads, such as level converters (data taken from [55]). The results are

reported for two supply voltages. In case of CPF-MVDFC scheduling the frequencies found out

are (¼����D*úã ��:hSD*úã���:7�7RD*+ã��). For CPF-MVMC scheduling scheme the operating frequency

(r � C) is SD*+ã�� .
We plotted Fig. 7.5 and 7.6 to get a visual picture of the experimental results. The figures show

the average reductions for different benchmarks averaged over all resource constraints. It is obvious

from the figure that the reductions are significant. It is also noted that for the reductions for MVDFC

scheme is better than the MVMC scheme. The CPF-MVDFC scheme works effectively for all

resource constraints and all benchmarks, where as, the CPF-MVMC scheme does not produce good

185

www.manaraa.com

Ta
bl

e
7.

3.
P

ow
er

,E
ne

rg
y

an
d

E
D

P
E

st
im

at
es

fo
r

B
en

ch
m

ar
ks

us
in

g
M

V
D

F
C

Po
w

er
,E

ne
rg

y
an

d
E

ne
rg

y-
D

el
ay

-P
ro

du
ct

R

ØÙÚ
Ø Ù Û
Ü Ø Ù
ØÝÚ
Ø ÝÛ
Ü ÞØ
Ø Ú
Ø Û
Ü Øß Ú
ß Û
Ü ßß
ÞØ Úß
ÞØ Û
Ü ßÞ
Ø

C

àá
àá %

àá
àá

%

àá
àá %

âã â
ã %

ä ã�å
ä ã�å

%
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
17

.2
8

4.
56

73
.6

1
0.

46
0.

35
74

.9
7

8.
87

2.
42

72
.7

2
2.

96
1.

57
46

.8
0.

99
0.

87
11

.3
4

(1
)

2
17

.2
8

4.
56

73
.6

1
0.

46
0.

35
74

.9
7

8.
87

2.
42

72
.7

2
2.

96
1.

57
46

.8
0.

99
0.

87
11

.3
4

E
3

17
.2

8
4.

56
73

.6
1

0.
46

0.
9

78
.2

4
8.

87
2.

61
70

.5
7

2.
96

1.
6

46
.0

0.
99

0.
8

18
.9

8
X

4
8.

87
2.

39
73

.0
5

0.
45

0.
23

77
.5

5
6.

67
1.

87
71

.9
6

2.
96

1.
58

46
.4

1.
31

1.
14

12
.8

9
P

5
17

.2
8

4.
56

73
.6

1
0.

23
0.

45
75

.8
9

6.
65

1.
96

70
.5

3
2.

96
1.

6
45

.9
1.

31
0.

87
32

.4
9

A
ve

ra
ge

va
lu

es
73

.5
0

76
.3

2
71

.7
0

46
.3

8
17

.4
1

1
17

.5
1

4.
62

73
.6

2
0.

23
0.

12
73

.9
6

8.
82

2.
35

73
.3

6
4.

9
2.

6
47

.2
2.

7
2.

3
15

.5
2

(2
)

2
25

.9
2

6.
84

73
.6

1
0.

23
0.

12
73

.8
4

8.
82

2.
36

73
.2

4
4.

9
2.

6
47

.2
2.

7
2.

0
26

.0
9

F
3

17
.5

1
4.

67
73

.3
3

0.
23

0.
45

75
.5

8
8.

82
2.

5
71

.6
6

4.
9

2.
6

46
.2

2
2.

7
2.

0
24

.7
1

I
4

17
.2

8
6.

6
61

.8
1

0.
23

0.
45

63
.9

3
8.

82
2.

84
67

.8
4.

9
3.

1
36

.9
8

2.
7

2.
9

N
o

R
5

17
.5

1
4.

67
73

.3
3

0.
23

0.
45

75
.5

8
8.

82
2.

5
71

.6
6

4.
9

2.
6

46
.2

2
2.

7
2.

0
24

.7
1

A
ve

ra
ge

va
lu

es
71

.1
4

72
.6

0
71

.5
4

44
.7

6
16

.2
1

1
17

.5
1

4.
62

73
.6

2
0.

46
0.

35
74

.9
6

13
.2

5
3.

55
73

.2
1

5.
9

3.
12

47
.0

2.
62

2.
43

7.
25

(3
)

2
26

.1
5

6.
9

73
.6

1
0.

46
0.

35
74

.5
13

.2
5

3.
55

73
.2

1
5.

9
3.

12
47

.0
2.

62
2.

43
7.

25
H

3
17

.7
4

4.
78

73
.0

5
0.

46
0.

9
76

.9
7

13
.2

5
3.

73
71

.8
5

5.
9

3.
17

46
.2

2.
62

2.
23

12
.5

5
A

4
17

.5
1

6.
71

61
.6

8
0.

23
0.

45
63

.7
7

10
.6

3.
73

64
.8

5.
9

4.
07

30
.8

3.
27

3.
85

N
o

L
5

17
.5

1
4.

67
73

.3
3

0.
23

0.
45

75
.6

10
.6

2.
98

71
.9

5.
9

3.
17

46
.2

3.
27

2.
46

24
.6

6
A

ve
ra

ge
va

lu
es

71
.0

6
73

.1
6

71
.0

43
.4

4
10

.3
4

1
25

.9
2

8.
88

65
.7

4
0.

23
0.

12
65

.9
11

.0
3

3.
5

68
.3

6
4.

9
3.

05
37

.7
2.

18
2.

04
6.

57
(4

)
2

25
.9

2
6.

84
73

.6
1

0.
23

0.
12

73
.8

4
11

.0
3

2.
98

72
.9

8
4.

9
2.

6
47

.9
6

2.
18

1.
73

20
.4

4
I

3
17

.5
1

4.
67

73
.3

4
0.

23
0.

45
75

.5
8

8.
82

2.
57

70
.8

6
4.

9
2.

64
46

.2
2

2.
72

2.
05

24
.7

1
I

4
17

.5
1

6.
71

61
.6

8
0.

23
0.

45
63

.7
7

8.
82

3.
32

62
.8

6
4.

9
3.

54
27

.7
3

2.
72

2.
75

N
o

R
5

17
.5

1
4.

67
73

.3
3

0.
23

0.
45

75
.5

8
8.

82
2.

5
71

.6
6

4.
9

2.
64

46
.2

2
2.

72
2.

05
24

.7
1

A
ve

ra
ge

va
lu

es
69

.5
4

71
.6

5
69

.3
4

41
.1

7
15

.2
4

1
8.

87
2.

34
73

.6
2

0.
23

0.
12

74
.1

4.
5

1.
22

72
.9

5.
0

2.
64

47
.2

5.
56

4.
4

20
.8

3
(5

)
2

8.
87

2.
34

73
.6

2
0.

23
0.

12
74

.1
4.

5
1.

22
72

.9
5.

0
2.

64
47

.2
5.

56
4.

4
20

.8
3

A
3

8.
87

2.
39

73
.0

5
0.

23
0.

45
77

.6
4.

5
1.

4
68

.9
5.

0
2.

74
45

.3
5.

56
3.

8
31

.6
3

R
4

8.
87

2.
39

73
.0

5
0.

23
0.

45
77

.6
4.

5
1.

4
68

.9
5.

0
2.

74
45

.3
5.

56
3.

8
31

.6
3

F
5

8.
87

2.
39

73
.0

5
0.

23
0.

45
77

.6
4.

5
1.

4
68

.9
5.

0
2.

74
45

.3
5.

56
3.

8
31

.6
3

A
ve

ra
ge

va
lu

es
73

.2
8

76
.2

0
70

.5
46

.0
6

27
.3

1

O
ve

ra
ll

av
er

ag
e

71
.7

0
74

.0
70

.8
2

44
.3

6
17

.3
1

186

www.manaraa.com

Ta
bl

e
7.

4.
P

ow
er

,e
ne

rg
y

an
d

E
D

P
E

st
im

at
es

fo
r

B
en

ch
m

ar
ks

us
in

g
M

V
M

C

Po
w

er
,E

ne
rg

y
an

d
E

ne
rg

y-
D

el
ay

-P
ro

du
ct

R

ØÙÚ
ØÙ æ
Ü Ø Ù
ØÝÚ
Ø Ýæ
Ü ÞØ
Ø Ú
Ø æ
Ü Øß Úß
æ
Ü ßß
ÞØ Úß
ÞØ æ
Ü ßÞ
Ø

C

àá
àá

%

àá
àá

%

àá
àá %

âã â
ã %

ä ã å
ä ã�å

%
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

1
17

.2
8

13
.2

23
.6

1
0.

46
0.

35
23

.6
8.

87
6.

84
22

.9
3.

0
2.

03
31

.4
7

0.
99

0.
9

8.
63

(1
)

2
17

.2
8

13
.7

20
.8

3
0.

46
0.

35
20

.8
8.

87
6.

96
21

.5
3

3.
0

1.
57

46
.8

0.
99

0.
7

29
.0

7
E

3
17

.2
8

9.
12

47
.2

2
0.

46
0.

46
48

.5
1

8.
87

5.
61

36
.7

5
3.

0
1.

57
46

.0
0.

99
0.

89
9.

98
X

4
8.

87
13

.4
3

N
A

0.
23

0.
23

N
A

6.
67

6.
77

N
A

3.
0

2.
5

16
.4

6
1.

31
1.

11
15

.3
3

P
5

17
.2

8
9.

35
45

.9
0.

23
0.

23
46

.5
1

6.
65

5.
61

15
.6

4
3.

0
1.

6
46

.0
1.

31
0.

89
32

.5
A

ve
ra

ge
va

lu
es

27
.5

1
27

.8
8

19
.3

6
37

.3
5

19
.1

0

1
17

.5
1

17
.7

6
N

A
0.

23
0.

23
N

A
8.

87
7.

67
13

.0
4

4.
9

3.
09

37
.0

2.
72

2.
06

24
.3

8
(2

)
2

25
.9

2
13

.6
8

47
.2

2
0.

23
0.

12
47

.2
1

8.
82

7.
66

13
.1

5
4.

9
2.

59
47

.2
2.

72
1.

72
36

.6
4

F
3

17
.5

1
9.

35
46

.6
0.

23
0.

23
47

.2
2

8.
82

7.
75

12
.1

3
4.

9
2.

64
46

.2
2

2.
72

2.
05

24
.7

1
I

4
17

.2
8

13
.4

3
22

.2
8

0.
23

0.
23

22
.5

8
8.

82
7.

51
14

.8
5

4.
9

4.
0

18
.5

2.
72

2.
66

2.
19

R
5

17
.5

1
9.

35
46

.6
0.

23
0.

23
47

.2
2

8.
82

6.
65

24
.6

4.
9

2.
64

46
.2

2
2.

72
2.

05
24

.7
1

A
ve

ra
ge

va
lu

es
32

.5
4

32
.8

5
15

.5
5

39
.0

3
22

.5
3

1
17

.5
1

17
.7

6
N

A
0.

46
0.

35
N

A
13

.2
5

9.
08

31
.4

7
5.

9
4.

0
31

.6
2.

62
2.

68
N

A
(3

)
2

26
.1

5
13

.8
47

.2
3

0.
46

0.
35

47
.6

4
13

.2
5

9.
24

30
.2

6
5.

9
3.

2
47

.0
2.

62
2.

08
20

.6
1

H
3

17
.7

4
9.

58
46

.0
0.

46
0.

46
47

.2
2

13
.2

5
7.

98
39

.7
7

5.
9

3.
2

46
.1

9
2.

62
2.

46
6.

11
A

4
17

.5
1

13
.4

3
23

.3
0.

23
0.

23
23

.6
1

10
.6

9.
0

15
.2

5.
9

5.
0

15
.4

3.
27

3.
32

N
A

L
5

17
.5

1
9.

35
46

.6
0.

23
0.

23
47

.2
2

10
.6

6.
41

39
.5

3
5.

9
3.

17
46

.1
8

3.
27

2.
82

13
.7

6
A

ve
ra

ge
va

lu
es

32
.6

3
33

.1
4

33
.1

4
37

.2
7

8.
10

1
25

.9
2

17
.7

6
31

.4
8

0.
23

0.
12

31
.3

4
11

.0
3

8.
95

18
.8

5
4.

9
4.

0
19

.2
2

2.
18

2.
2

N
A

(4
)

2
25

.9
2

13
.8

46
.7

6
0.

23
0.

12
46

.7
5

11
.0

3
7.

68
30

.3
7

4.
9

2.
6

47
.2

2.
18

1.
72

20
.8

1
I

3
17

.5
1

9.
12

47
.9

2
0.

23
0.

23
48

.5
5

8.
82

5.
82

34
.0

1
4.

9
2.

6
46

.2
2

2.
72

2.
34

13
.9

6
I

4
17

.5
1

13
.4

3
23

.3
0.

23
0.

23
23

.6
1

8.
82

7.
51

14
.8

5
4.

9
3.

54
27

.7
3

2.
72

2.
36

13
.2

8
R

5
17

.5
1

9.
12

47
.9

2
0.

23
0.

23
48

.5
5

8.
82

5.
82

34
.0

1
4.

9
2.

64
46

.2
2

2.
72

2.
34

16
.2

3
A

ve
ra

ge
va

lu
es

39
.4

8
39

.7
6

26
.4

2
37

.3
2

12
.7

6

1
8.

87
9.

24
N

A
0.

23
0.

12
N

A
4.

5
3.

58
20

.4
4

5.
0

2.
64

47
.2

2
5.

56
3.

81
31

.4
(5

)
2

8.
87

9.
24

N
A

0.
23

0.
12

N
A

4.
5

3.
58

20
.4

4
5.

0
2.

64
47

.2
2

5.
56

3.
81

31
.4

A
3

8.
87

9.
35

N
A

0.
23

0.
23

N
A

4.
5

3.
65

18
.9

5.
0

2.
74

45
.3

5.
56

3.
95

28
.9

R
4

8.
87

13
.4

3
N

A
0.

23
0.

23
N

A
4.

5
3.

56
20

.9
5.

0
3.

19
36

.2
4

5.
56

4.
60

17
.1

1
F

5
8.

87
9.

35
N

A
0.

23
0.

23
N

A
4.

5
3.

65
18

.9
5.

0
2.

74
45

.3
5.

56
3.

95
28

.9
A

ve
ra

ge
va

lu
es

0
0

19
.9

2
44

.2
6

27
.5

4

O
ve

ra
ll

av
er

ag
e

26
.4

4
26

.7
3

22
.5

1
39

.0
5

17
.9

9

187

www.manaraa.com

1 2 3 4 5
0

20

40

60

80

Different Benchmark Circuits −>

P
ea

k
P

ow
er

 R
ed

uc
tio

n
(%

)
−

>

1 2 3 4 5
0

20

40

60

80

Different Benchmark Circuits −>

P
ea

k
P

ow
 D

iff
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

20

40

60

80

Different Benchmark Circuits −>

A
vg

 P
ow

er
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

10

20

30

40

50

Different Benchmark Circuits −>

E
ne

rg
y

R
ed

uc
tio

n
(%

)
−

>

Figure 7.5. Average Reductions in Power or Energy for Benchmarks using CPF-MVDFC

results for ARF benchmark. We did not find any work in the literature that deals with simultaneous

reduction of energy and transient power, so we could not provide comparison with any other works.

In order to study the power consumption per cycle, we plotted the power profile for different

benchmarks over all the control steps (clock steps). Fig. 7.7, 7.8, 7.9, 7.10 and 7.11 show power

profile for benchmarks for resource constraints RC1, RC2, RC3, RC4 and RC5 respectively. The

curves labeled as ”SF” correspond to the profile when the schedule is operated at a single frequency

(which is the maximum frequency of slower operator, multiplier) and single voltage. The profiles

labeled as ”DFC” correspond to the case when dynamic clocking and multiple voltage scheme is

used. Similarly, the profiles labeled as ”MC” is for the MVMC scheme. The effectiveness of the

proposed scheduling schemes is obvious from the figures.

188

www.manaraa.com

1 2 3 4 5
0

10

20

30

40

Different Benchmark Circuits −>

P
ea

k
P

ow
er

 R
ed

uc
tio

n
(%

)
−

>

1 2 3 4 5
0

10

20

30

40

Different Benchmark Circuits −>

P
ea

k
P

ow
 D

iff
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

5

10

15

20

25

30

35

Different Benchmark Circuits −>

A
vg

 P
ow

er
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

10

20

30

40

50

Different Benchmark Circuits −>

E
ne

rg
y

R
ed

uc
tio

n
(%

)
−

>

Figure 7.6. Average Reductions for Benchmarks using CPF-MVMC

7.6 Conclusions

In low power deigns for portable applications, the simultaneous minimization of total energy

and transient power is essential. The modifed-CPF parameter defined and used in this work essen-

tially facilitates such simultaneous optimization using ILP formulations. The optimization is per-

formed using MVDFC scheme and MVMC scheme. The datapath scheduling algorithm described

in this chapter is particularly useful for synthesizing data intensive application specific integrated

circuits. The algorithm attempts to optimize energy and power while maintaining performance.

The scheduling algorithm assumes number of different types of resources at each voltage levels

(both CPF-MVDFC and CPF-MVMC) and the number of allowable frequencies (CPF-MVMC

scheme) as resource constraints. The energy delay product for both the CPF-MVDFC and CPF-

MVMC scheduling scenario was estimated to keep track of the effect of scheduling algorithms on

189

www.manaraa.com

1 2 3 4
0

5

10

15

20

(1) EXP
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

1 2 3 4 5 6
0

5

10

15

20

(2) FIR
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>
1 2 3 4 5 6

0

5

10

15

20

(3) HALSF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

1 2 3 4 5
0

5

10

15

20

25

30

(4) IIR

SF

DFC

MC

Control steps (c) −>
C

yc
le

 p
ow

er
 (

P
c)

−
>

Figure 7.7. Power Profile for Benchmark for Resource Constraint RC1

circuit performance. The CPF-MVDFC scheduling resulted in reduction of EDP for all benchmarks

and all resource constraints, which shows its effectiveness. On the other hand, the CPF-MVMC

scheme resulted in improvement in EDP in almost all cases, except for a few cases, where there

was no improvement. The results clearly indicate that multiple supply voltage and dynamic fre-

quency clocking scheme yields better power and energy minimization than multiple supply voltage

and multicycling scheme. The effectiveness of the scheduling schemes in the context of pipelined

datapath and control intensive applications, needs to be investigated.

190

www.manaraa.com

1 2 3 4
0

5

10

15

20
(1) EXP

SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

1 2 3 4 5 6
0

5

10

15

20

25

30
(2) FIR

SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>
1 2 3 4 5 6

0

5

10

15

20

25

30

(3) HAL

SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

1 2 3 4 5 6
0

5

10

15

20

25

30

(4) IIR

SF

DFC

MC

Control steps (c) −>
C

yc
le

 p
ow

er
 (

P
c)

−
>

Figure 7.8. Power Profile for Benchmark for Resource Constraint RC2

1 2 3 4 5
0

5

10

15

20

(1) EXP

SF

DFC
MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10

15

20

(2) FIR
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10

15

20

(3) HAL
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10

15

20

(4) IIR
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

Figure 7.9. Power Profile for Benchmark for Resource Constraint RC3

191

www.manaraa.com

1 2 3 4
0

2

4

6

8

10

12

14
(1) EXP

SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

1 2 3 4 5 6
0

5

10

15

20

(2) FIR
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>
1 2 3 4 5 6

0

5

10

15

20

(3) HAL
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

1 2 3 4 5 6
0

5

10

15

20

(4) IIRSF

DFC

MC

Control steps (c) −>
C

yc
le

 p
ow

er
 (

P
c)

−
>

Figure 7.10. Power Profile for Benchmark for Resource Constraint RC4

1 2 3 4 5
0

5

10

15

20

(1) EXP

SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10

15

20

(2) FIR

SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10

15

20

(3) HAL
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

0 2 4 6 8
0

5

10

15

20

(4) IIR
SF

DFC

MC

Control steps (c) −>

C
yc

le
 p

ow
er

 (
P

c)
−

>

Figure 7.11. Power Profile for Benchmark for Resource Constraint RC5

192

www.manaraa.com

CHAPTER 8

POWER FLUCTUATION MINIMIZATION

In this chapter, we describe a new datapath scheduling scheme for the reduction of cycle power

fluctuation at behavioral level using integer linear programming (ILP) based models [175]. We de-

velop a power model to capture the cycle power fluctuation as cycle-to-cycle power gradient using

switching activity, supply voltages and operating frequency. Then, we provide ILP based models

for its minimization assuming three modes of circuit operation, such as (1) single supply volt-

age and single operating frequency (SVSF), (2) multiple supply voltages and dynamic frequency

(MVDFC) and (3) multiple supply voltages and multicycling (MVMC). The effectiveness of our

scheduling technique is measured by estimating the mean power gradient, the peak power (%�)
consumption, the average power consumption (%Tk) and the power delay product (%'Ä %) of the

scheduled data flow graph. We compare the MVDFC and MVMC based scheduling algorithms

with the results of SVSF based scheduling algorithm. It may be noted that in the case of multi-

ple supply voltage schemes, the power consumption in the level converters is taken into account.

Similarly, in hte case of dynamic frequency clocking, the overhead due to dynamic clocking unit

is considered. The dynamic frequency clocking methodology is more effective for data intensive

signal processing applications. The proposed scheduling algorithms are resource constrained. For

the SVSF scheme the resource constraint is the number of functional units. On the other hand,

both the MVDFC and MVMC scheduling schemes use the number and type of functional units at

different operating voltages as the resource constraints. In addition, the MVDFC scheme uses a

certain number of allowable frequencies as resource constraints.

193

www.manaraa.com

8.1 Power Fluctuation Modeling

In this section, we discuss different power terminologies with reference to a datapath circuit.

Let us assume that the datapath is represented in the form of a sequencing data flow graph. The

datapath uses various functional units operating at different supply voltages. The level convert-

ers are considered as resources operating in the control step in which it needs to step up signal.

The dynamic clocking unit (DCU) that generates dynamic frequency is considered as a resource

operating in all the control steps. Our aim is to develop power models using generic terms such

as switching activity, supply voltages and operating frequencies. The intention of using such pa-

rameters is to make the power model a general one, independent of any specific energy or power

models. It can accomodate both the look-up table based energy (power) models and energy (power)

macro-models. The generic model can also help in easy integration of the proposed power model

in a behavioral synthesis tool that uses both behavioral power estimator and datapath scheduler.

Moreover, the generic model can be easily tuned to handle any of the three modes of datapath

circuit operation, such as (i) single supply voltage and single frequency (SVSF), (ii) multiple sup-

ply voltages and dynamic frequency (MVDFC), and (iii) multiple supply voltage and multicycling

(MVMC). For MV scheme the datapath uses functional units operating at different supply voltages.

In this mode the level converters are considered as resources operating in the control step in which

it needs to step up signal.

Let Ï�@7:BÏvC�:4�E�E�E�E:BÏvF be a set of � observations from a given distribution. The sample mean

(which is an unbiased estimator for the population mean, Õ) is á @F � Fm���@ Ïvm . The observation-

to-observation gradient can be defined as, Þ Ï�m�dQÏ�m ´ @¯Þ , where ��Í ¥ Í8� . The mean gradient is

given by @F ´ @ � Fm���C Þ Ï�m�d×Ïvm ´ @¯Þ . It may be noted that there are �µd¬� gradients for � observations.

The notations used in the description is given in Table 8.1. It may be noted that for single frequency

and single supply voltage mode of operation, 9�mb® � and r � are the same for any clock cycle (¤) and

resource (¥). Similarly, for multicycling operation the r � are the same for any clock cycle (¤).
The power consumption for any control step ¤ is given by Eqn. 8.1. This is the total power con-

sumption of all functional units active in control step ¤ . This also includes the power consumption

of the level converters where the level converters are considered as resources operating in a cycle

194

www.manaraa.com

Table 8.1. Notations used in the Descriptionp : total number of control steps in the DFGØ : total number of operations in the DFG¤ : a control step or a clock cycle in DFG (�'Í ¥ Í p)��m : any operation ¥ , �'Í ¥ Í¬Ø ,% � : the total power consumption of all functional units active
in control step ¤ (cycle power consumption)%u : peak power consumption for the DFG equal to áµý�Ïi.c%T�h0 & �%ik : mean power consumption of the DFG (average % �)%-, � : power gradient for cycle ¤ (where, ¤� N�^� p)%-,t : peak power gradient of the DFG which is equal to áµý�Ï�.c%1, � 0 & �*ú%1, : mean power gradient of the DFG over ¤� N�^� p& M ¯® � : any functional unit of type � operating at voltage level >& M m : any & M ¯® � needed by ��m for its execution (��mP1e& M ¯® �)& M mb® � : any functional unit & M m active in control step ¤� � : total number of functional units active in step ¤
(same as the number of operations scheduled in ¤)��mb® � : switching activity of resource & M mb® �96mb® � : operating voltage of resource & M mb® �$ mb® � : load capacitance of resource & M mb® �r � : frequency of control step ¤

¤ , if the current resource is driven by a resource operating at lower voltage.

% � W� : ªmE��@ ��mb® � $�m ® � 9 Cmb® � r � (8.1)

The peak power consumption of the DFG is the maximum power consumption over all the control

steps which can be expressed as below.

% áµý�Ï � % � � & � ��@zë i áµý�Ï Ý � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ß & � ��@zë i (8.2)

The mean cycle power consumption of the DFG (%�k) is defined as,

%ik @i � i� ��@ % � @i � i� ��@ Ý � : ªm���@ �gmb® � $�mb® � 9 Cmb® � r � ß (8.3)

195

www.manaraa.com

The mean cycle power %�k is an unbiased estimate of the average power consumption of the DFG.

The true average power consumption of the DFG is the total energy consumption of the DFG per

clock cycle or per second.

The power gradient %1, � for any control step ¤ is defined as the absolute difference of power

consumption from the previous control step, as given below.

%1, � Þ % � d×% � ´ @�Þ ó & � ��C<ë i ô ººº � : ªm���@ � m ® �<$ mb® �<9 Cmb® � r ��d!� : ª » ñm���@ � m ® � ´ @ $ mb® � ´ @ 9 Cm ® � ´ @ r � ´ @ ººº ó & � ��C<ë i ô (8.4)

The peak of the power gradients is denoted as (%1,) :

%-, áµý�Ï � Þ % � d×% � ´ @¯Þ � & � ��C<ë i áµý�Ï Ý ººº � : ªm���@ ��m ® � $�mb® � 9 Cmb® � r � d � : ª » ñm���@ ��m ® � ´ @h$�mb® � ´ @h9 Cm ® � ´ @ r � ´ @ ººº ß ó & �/� ��C<ë i ô (8.5)

The mean power gradient *ú%1, is calculated as,

*ú%1, @i ´ @ �ji� ��C %1, � @i ´ @ �ji� ��C Þ % � d×% � ´ @¯Þ @i ´ @ � i� ��C Ý ººº � : ªm���@ ��m ® � $�mb® � 9 Cm ® � r � d!� : ª » ñmE��@ ��mb® � ´ @<$�mb® � ´ @º9 Cmb® � ´ @ r � ´ @ ººº ß
(8.6)

The above generic power models are independent of any specific energy or power models. Us-

ing the dynamic energy model proposed in [51] we can express the effective switching capacitance

of our proposed model as,

�gm�$�m $tw�õ m .2�gm @ :h�gm C 0 (8.7)

Here, the ��m and $�m are the parameters corresponding to the functional unit & M m as defined before.

The $tw�õ m is a measure of the effective switching capacitance of functional unit & M m , which is a

function of ��m @ and ��m C ; the ��m @ and ��m C are the average switching activities on the first and second

input operands of & M m . Similarly, any other power or energy models can be incorporated. It should

be noted that the above switching model (in Eqn. 8.7) handles input pattern dependencies. Using

196

www.manaraa.com

the above Eqn. 8.7 we can rewrite Eqn. 8.6 as follows.

*ú%1, @i ´ @ � i� ��C Ý ººº � : ªmE��@ $tw�õ mb® � 9 Cmb® � r � d � : ª » ñm���@ $tw�õ mb® � ´ @ 9 Cmb® � ´ @ r � ´ @ ººº ß (8.8)

We use the above *+%-, as the objective function for low power datapath scheduling. We make the

following observations about the *+%1, . It is a non-linear function because of the absolute function

(ý�3¿Á or Þ1Þ). It is a function of parameters, such as switching activity, capacitance, operating voltage

and operating frequency. We will use the ILP formulations to minimize *ú%1, through datapath

scheduling for three modes of datapath operation, namely SVSF, MVDFC and MVMC as described

before.

The critical path delay of the DFG can be calculated as,

� � im���@ @� ª (8.9)

It should be noted that the r � is the same for single frequency and multicycling operations for all

values of ¤ and may be different for dynamic frequency clocking operations. The power delay

product of the DFG is defined as the product of the average power consumption and critical path

delay as shown below. %'Ä %ú �%ikÇ	�� (8.10)

Using Eqn. 8.3, 8.7, and 8.9, we have the following expression for the power delay product.

%'Ä % @i �jim���@ � : ªm���@ $tw�õ mb® � 9 Cmb® � r � 	t�jim���@ @� ª (8.11)

To study the impact of the scheduling algorithms on the performance of the datapath we estimate

the power delay product of the scheduled DFGs using the above expression.

8.2 Modeling of Non-linearities

It is clear from the Eqn. 8.8 that the *ú%1, is a non-linear function. The nonlinearity is because

of the presence of absolute function (ý<3£Á or Þ^Þ). The ILP formulations has to handle this form of

197

www.manaraa.com

non-linearity. In this section, we address the transformations that help in linear modelling of the

nonlinear functions. The general form of linear programming can be represented as [173, 174] :

Minimize : � m Þ 8 m Þ
Subject to : 8�m�O[� ü ý�mÔüt	�ÏAü^ÍÐ3ºmz:a| ¥Ï ü *à"#: |<0 (8.12)

where, 8Dm , is the deviation between the prediction and observation. The Þ 8#m<Þ is non-linear because

of absolute function. This can be linearized using the following transformation.

Let, 8�m be represented as difference of two non-negative variables,

8 m h8 @m dÓ8 Cm � (8.13)

Using these new variables we can reexpress the LP problem in Eqn. 8.12 as follows.

Minimize : � m ºº 8 @m dÓ8 Cm ºº
Subject to : 8 @m dÓ8 Cm O � ü ý�mÜüÇ	TÏAü^ÍÐ3ºmz:]| ¥Ï#ün*à"#:ç|<08 @m :�8 Cm *à"#:ç| ¥

(8.14)

If the product of 8 @m and 8 Cm is zero, then

ºº 8 @m dè8 Cm ºº ºº 8 @m ºº O ºº 8 Cm ºº 8 @m O+8 Cm (8.15)

Using the above, we can write the LP problem in Eqn. 8.14 as shown below.

Minimize : � m 8 @m O+8 Cm
Subject to : 8 @m dÓ8 Cm O[� ü ý�mÜüÇ	TÏAü^ÍÐ3ºmz:]| ¥Ï#ün*à"#:ç|<08 @m :�8 Cm *à"#:ç| ¥

(8.16)

198

www.manaraa.com

The problem in Eqn. 8.12 and 8.16 are equivalent and minimization of Eqn. 8.16 will result in

minimization of Eqn. 8.12.

8.3 ILP Formulations to Minimize Mean Power Gradient

In this section, we discuss the ILP models for minimization of *ú%1, for various modes of

datapath operations, such as SVSF, MVDFC and MVMC. It may be noted that different decision

variables are to be used for the three different modes. We first discuss the formulations using

MVDFC followed by MVMC. The formulation for SVSF is not presented since it is trivial one.

The notations used in ILP formulations is given in Table 8.2.

Table 8.2. Notations used in ILP formulations* ¯® � : maximum number of functional units & M q® �À m : as soon as possible (ASAP) time stamp for the operation ��m;�m : as late as possible (ALAP) time stamp for the operation ��m%Ñ./$tw�õ m :B>v: r 0 : power consumption of functional unit & M m at voltage > and frequency r
used by ��m for its executionÏ mb® � ® � ® � : decision variable which takes the value of � if operation � m is scheduled
in control step ¤ using the functional unit & ¯® � and ¤ has frequency r �8 mb® � ® C ® l : decision variable which takes the value of � if operation ��m is using any & ¯® �
and scheduled in control steps Ù � á� mb® � : latency for operation �Dm using resource operating at voltage >
(in terms of number of clock cycles)

8.3.1 Formulations using Multiple Voltages and Dynamic Frequency

In dynamic frequency clocking [59, 62], the clock frequency is varied on-the-fly based on the

functional units active in that cycle. In this clocking scheme, all the units are clocked by a single

clock line which switches at run-time. The frequency reduction creates an opportunity to operate

the different functional units at different voltages, which in turn, helps in further reduction of power.

Objective Function : The objective is to minimize the mean power gradient *ú%1, described

199

www.manaraa.com

in Eqn. 8.8 of the whole DFG over all control steps.

Minimize : *ú%1, (8.17)

Using Eqn. 8.6, this can be restated as :

Minimize : @i ´ @ � i� ��C Þ % � d×% � ´ @¯Þ (8.18)

This problem has the non-linearity in it because of the absolute function. This can be converted to

an equivalent problem using the transformation suggested in the previous section.

Minimize : @i ´ @ � i� ��C .c% � OQ% � ´ @h0
Subject to : Power gradient constraints

(8.19)

The above problem in Eqn. 8.19 is simplified to :

Minimize : Ci ´ @ � i ´ @� ��C % � OQ%T@iOQ% i
Subject to : Power gradient constraints

(8.20)

Using the decision variables and above LP objective function is formulated as,

Minimize : Ý Ci ´ @ ß �ji ´ @� ��C � m-,�D � ~ � � � � Ï m ® � ® � ® � %Ñ./$ w�õ m :B>v: r 0gOà� m),�D � ~ � � � � Ï m ®Ü@B® � ® � %Ñ./$ w/õ m :B>v: r 0O×� m),�D � ~ � � � � Ï mb® i ® � ® � %Ñ./$tw�õ m :B>�: r 0
Subject to : Power gradient constraints

(8.21)

Uniqueness Constraints : These constraints ensure that every operation �#m is scheduled to one

unique control step within the mobility range (
À m , ; m) with a particular supply voltage and operating

frequency. We represent them as, | ¥ , ��Í ¥ Í¬Ø ,

� � � � � � Ï mb® � ® � ® � � (8.22)

200

www.manaraa.com

Precedence Constraints : These constraints guarantee that for an operation �#m , all its predecessors

are scheduled in an earlier control step and its successors are scheduled in a later control step.

These are modelled as, | ¥ :�0D:<�Dm�1e%��}L�6 5 � ,
� � � � � ° ïf � ÷ ï 6^	TÏ m ® f ® � ® � d � � � � � ° �� � ÷ � LÇ	TÏ üh® � ® � ® � Í d'� (8.23)

Resource Constraints : These constraints make sure that no control step contains more than & ¯® �
operations of type � operating at voltage > . These can be enforced as, |u¤ , ��Í[¤�Í p and |u> ,

� m),�D � ~ � � Ï mb® � ® � ® � Í * ¯® � (8.24)

Frequency Constraints : This set ensures that if a functional unit is operating at higher voltage

level then it can be scheduled in a lower frequency control step, whereas, a functional unit is op-

erating at lower voltage level then it can not be scheduled in a higher frequency control step. We

write these constraints as, | ¥ , �'Í ¥ Í¬Ø , |�¤ , �'Í[¤�Í p , if r ¹ > , then Ï mb® � ® � ® � �" .
Power Gradient Constraints : To eliminate the non-linearity introduced due to the absolute func-

tion, we introduce these constraints (as outlined in Eqn. 8.19, 8.20 and 8.21), |u¤ , �)Í[¤�Í p ,

� m),�D � ~ � � � � Ï m ® � ® � ® � 	T%Ñ./$ w�õ m :B>�: r 0�d!� m-,�D � ~ � � � � Ï m ® � ´ @B® � ® � 	�%Ñ./$ w�õ m :B>�: r 0 Í %1,Ç
(8.25)

The %1, is peak power gradient constraint added to the objective function and minimized along-

with it.

8.3.2 Formulations using Multiple Supply Voltages and Multicycling

In this subsection, we describe the ILP formulations for the minimization of *ú%1, using mul-

tiple supply voltages and multicycling. In this scheme, the functional units are operated at multiple

supply voltages and the lower operating voltage functional units are scheduled in consecutive con-

trol steps.

201

www.manaraa.com

Objective Function : The objective is to minimize the mean power gradient *ú%1, described

in Eqn. 8.8 of the whole DFG over all control steps.

Minimize : *ú%1, (8.26)

Using Eqn. 8.6, this can be restated as :

Minimize : @i ´ @ �ji� ��C Þ % � d×% � ´ @¯Þ (8.27)

This problem has the non-linearity in it because of the absolute function. This can be converted to

an equivalent problem using the transformation suggested in the previous section.

Minimize : @i ´ @ �ji� ��C .c% � OQ% � ´ @h0
Subject to : Power gradient constraints

(8.28)

The above problem in Eqn. 8.28 is simplified to : Following the similar steps as in the previous

section (section 8.3.1) and using the transformations, we redefine the objective function.

Minimize : Ci ´ @ �ji ´ @� ��C % � OQ%T@iOQ% i
Subject to : Power gradient constraints

(8.29)

Then, using the decision variables the objective function is formulated as,

Minimize : Ý Ci ´ @ ß �ji ´ @C ��C � m),�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô %Ñ./$ w�õ m :B>v: r 0O�� m),�D � ~ � � � � 8Dmb® � ®Ü@B®Ü@<%Ñ./$tw�õ m :B>�: r 0O�� m),�D � ~ � � � � 8 mb® � ® i ® i %Ñ./$ w/õ m :B>v: r 0
Subject to : Power gradient constraints

Uniqueness Constraints : These constraints ensure that every operation �Am is scheduled in appro-

priate control steps within the mobility range (
À m , ;�m) with a particular supply voltage. Depending

202

www.manaraa.com

on the supply voltage it may be operated at more than one clock cycle. We represent them as, | ¥ ,�'Í ¥ Í¬Ø ,

� � � ÷ ï ³�° ï ³ @ ´ n ï� ~C � ÷ ï 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô � (8.31)

When the operators are operating at highest voltage, they are scheduled in one unique control step,

whereas, when they are to be operated at lower voltages they need more than one clock cycle for

completion. Thus, for lower voltage the mobility is restricted.

Precedence Constraints : These constraints guarantee that for an operation �#m , all its predecessors

are scheduled in an earlier control step and its successors are scheduled in a later control step.

These constraints should also take care of the multicycling operations. These are modelled as,| ¥ :�0�:<� m 1µ%��}L�6 5 � ,
� � � ° ïC � ÷ ï . Ù O � mb® � d �q0�	B8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô d � � � ° �C � ÷ � Ù 	H8 üh® � ® C ® ó C ³ n � ~ ´ @ ô Í d'� (8.32)

Resource Constraints : These constraints make sure that no control step contains more than & ¯® �
operations of type � operating at voltage > . These can be enforced as, |v> and | Ù , �'Í Ù Í p ,

� m),�D � ~ � C 8 m ® � ® C ® ó C ³ n ï� ~ ´ @ ô Í * ¯® � (8.33)

Power Gradient Constraints : These constraints are introduced to eliminate the absolute function

non-linearity of the objective function. These constraints can be enforced as, | Ù , �)Í Ù Í p ,

� m-,�D � ~ � � 8 mb® � ® C ® ó C ³ n ï� ~ ´ @ ô 	�%Ñ./$ w�õ m :B>v: r � C 0d � m),�D � ~ � � 8 mb® � ® ó C ´ @ ô ® ó C ³ n ï� ~ ´ C ô 	�%Ñ./$tw�õ m :B>�: r � C 0 Í %1, (8.34)

Where, %1,Ç is power gradient constraint which is added to the objective at minimized alongwith

it.

203

www.manaraa.com

8.4 Scheduling Algorithm

In this section, we will discuss the solutions for the ILP formulations obtained in the previous

section and develop scheduling algorithms for both MVDFC and MVMC schemes. The target

architecture model assumed by the scheduling schemes is same as the one used in [65]. All func-

tional units have a register each and a multiplexor. Each functional unit feeds a single register. The

register and the multiplexor operate at the same voltage level as that of the functional units. Level

converters are used when a low-voltage functional unit is driving a high-voltage functional unit

[65, 95]. A controller decides which of the functional units are active in each control step and those

that are not active are disabled using the multiplexors. For MVDFC scheme, the controller has a

storage unit to store the parameters, cycle frequency index (¤ ru¥ �) obtained from the scheduling,

which serves as clock dividing factor for the dynamic clocking unit. The cycle frequency r � is

generated dynamically and a functional unit operating at one of the supply voltages is activated.

The inputs to the algorithm are an unscheduled data flow graph (UDFG), the resource con-

straints, the number of allowable voltage levels (
� �), the number of allowable frequencies (

� �),
delay of each resource (6 DGF), multiplexor (6 O A7�), register (6 : � ö) at different voltage levels. The

delays of level converters (6 � 5 F �) is represented in the form of a matrix that shows the delay in

converting one at voltage level 9 m to another voltage level 9 ü (where, both 9 m :º9 ü 1×9 n Ë). The re-

source constraint includes the number of ALUs and multipliers at different voltage levels 9�m (where,96mB1×96n<Ë). The scheduling algorithm determines the proper time stamp for each operation, r�¢ k£w � ,¤ ru¥ � (using [48]) and voltage level such that the function *+%1, (Eqn. 8.8) is minimum.

The ILP based scheduler which minimizes modified cycle power profile function of the DFG

is outlined in Fig. 8.1. In step 1, the scheduler constructs a look-up table for effective switching

capacitance for known values of average switching activity pair as described in Eqn. 8.7. In step

2, the scheduler determines the switching activities at the inputs of each node by using behavioral

simulation of DFG. For this purpose, different set of application specific input vectors (having

different correlations) are given at the primary inputs of the DFG and average swtiching activity at

each inputs of other nodes are calculated [167, 169]. It should be noted that if the look-up table

(in step 1) does not have the switching capacitance for a pair of input average swtiching activities

204

www.manaraa.com

Input : DFG, Constraints, Voltage and Freq. Levels, Delays
Output : Scheduled DFG, r�¢ kºw � , p , ¤ ru¥ � , Power estimates
Step 1 : Construct effective switching capacitance look-up table.
Step 2 : Calculate the switching activities for each node.
Step 3 : Find ASAP and ALAP schedule of the UDFG.
Step 4 : Determine the mobility graphs for different schemes.
Step 5 : Calculate operating frequency of FUs using delays.
Step 6 : Model the ILP formulations of DFG using AMPL.
Step 7 : Solve the ILP formulations using LP-Solve.
Step 8 : Obtain the scheduled DFG.
Step 9 : Determine r � , r�¢ k£w � and ¤ ru¥ � for MVDFC scheme.
Step 10 : Estimate the power and delay of the scheduled DFG.

Figure 8.1. Scheduling for *+%1, Minimization

(in step 2), then the scheduler uses interpolation techniques to find the same. The third step is

to determine the as soon as possible (ASAP) time stamp of each operation. The fourth step is

the determination of the as late as possible (ALAP) time stamp of each vertex for the DFG. The

ASAP time stamp is the start time and ALAP time stamp is the finish time of each operation.

These two time stamps provide the mobility of a operation and the operation must be scheduled

in this mobile range. This mobility graph needs to be modified for the MVMC scheme. Then the

scheduler finds the ILP formulations based on the models described before. The scheduler uses

modeling language AMPL to model the ILP formulations [166]. At this step, we calculate the

power consumption of the functional units as follows. The operational delay of a functional unit is

assumed as (6�DGF¶OÓ6 O A7��OÔ6 : � ö�OÓ6 � 5 F �). For the MVMC scheme the operating frequency is the

frequency corresponding to operational delay at the highest operating voltage of multiplier unit.

On the other hand, for MVDFC scheme operating frequency of a functional unit is assumed to be

the inverse of operational delay of a functional unit at corresponding supply voltage. We get the

switching capacitance from step 1 and step 2, and for different operating voltages and frequencies

the power values are calculated whenever necessary. After the ILP formulation is solved using

LP-Solve the scheduled DFG is obtained. Then, the scheduler determines the cycle frequencies

for MVDFC scheme using the methods proposed in [48]. Finally, power consumptions, energy

consumptions and energy delay product of the scheduled DFG is calculated.

205

www.manaraa.com

0

2

5

6

7

4

Source

Sink

* **

+ +

+

NOP

NOP

3

c0

c1

c2

c3

c4

1

(a) ASAP Schedule

0

1

2

34

56

NOP

NOP

7

*

*

*+

+ +

Source

Sink

(b) ALAP Schedule

1 2 43 5 6
* * * + ++

(c) Mobility for MVDFC

* * * + + +
1 2 3 4 5 6

c1

c2

c3

c4

c0

(d) Mobility for MVMC

Figure 8.2. Example Data Flow Graph (DFG)

206

www.manaraa.com

We illustrate the solution for the ILP formulations with the help of the DFG shown in Fig. 8.2.

The ASAP schedule is shown in Fig. 8.2(a) and the ALAP schedule is shown in Fig. 8.2(b). From

the ASAP and ALAP scheduling we obtained the mobility graphs shown in Fig. 8.2(c) and Fig.

8.2(d) for MVDFC and MVMC schemes respectively. Using these mobility graphs, we get the ILP

formulations. We solved the formulation using LP-solve and based on the results, we obtained the

scheduled DFG. In this MVMC case, the mobility graph considers the multicycle operations. In

this illustration, we assume that we have two operating voltage levels, and when the multipliers are

operated at lower voltage, they take two clock cycles. It should be noted that the mobility graph

will depend on the number of operating voltages and the assumed operating frequency.

8.5 Experimental Results

In this section we discuss the experiments conducted for the scheduling schemes proposed

in the previous sections. The ILP based schedulers for all three schemes (SVSF, MVDFC and

MVMC) are tested with five benchmark circuits :

3 Example circuit (EXP) (8 nodes, 3*, 3+, 9 edges)

3 FIR filter (11 nodes, 5*, 4+, 19 edges)

3 IIR filter (11 nodes, 5*, 4+, 19 edges)

3 HAL differential equation solver (13 nodes, 6*, 2+, 2-, 1 ¹ , 16 edges)

3 Auto-Regressive filter (ARF) (15 nodes, 5*, 8+, 19 edges).

The following notations are used to express results are given in Table 8.3.

We use the look-up table method for average switching capacitance calculation. The look-up

table construction consists of two phases, such as input pattern generation and cell characterization.

We generate the primary input signal of different correlations using the autoregressive moving

average (ARMA) model [169]. We perform the characterization of the physical implementations

of the library modules available in [55] by applying the the input patterns generated above for

known values of (��m @ :h�gm C) pairs. Whenever necessary, we used interpolation method to find the

207

www.manaraa.com

Table 8.3. Notations used in Describing the Results*+%1, ÷ : the mean power gradient (in á �) for SVSF operation*+%1, � : the mean power gradient (in á �) for MVDFC operation*+%1, O : the mean power gradient (in á �) for MVMC operation% ÷ : the peak power consumption (in á �) for SVSF operation% � : the peak power consumption (in á �) for MVDFC operation% O : the peak power consumption (in á �) for MVMC operation% k ÷ : the average power consumption (in á �) for SVSF operation%�k � : the average power consumption (in á �) for MVDFC operation%�k O : the average power consumption (in á �) for MVMC operation� ÷ : the critical path delay (in ��Á) for SVSF operation� � : the critical path delay (in ��Á) for MVDFC operation� O : the critical path delay (in ��Á) for MVMC operation%'ÄY% ÷ : the power delay product (in ��Å) for SVSF operation%'ÄY% � : the power delay product (in ��Å) for MVDFC operation ./ �% k � 	�� � 0%'ÄY% O : the power delay product (in ��Å) for MVMC operation ./ W%Tk O 	�� O 0s¶% � : percentage peak power reduction for MVDFC operation ./ ó
 � t ´
 � v ô
 � t 	P�4"D"�0s¶% O : percentage peak power reduction for MVMC operation ./ ó
 � t ´
 � � ô
 � t 	��4"D"�0s¶%'Ä % � : percentage PDP reduction for MVDFC operation ./ ó
 �
 t ´
 �
 v ô
 �
 t 	��4"D"�0s¶%'Ä % O : percentage PDP reduction for MVMC operation ./ ó
 �
 t ´
 �
 � ô
 �
 t 	P�4"D"�0
average switching capacitance for any other values of (��m @ :h�gm C) pairs that does not exist in the look-

up table. It should be noted that larger the size of look-up table, better is the accuracy. Our look-up

table has 100 pairs of entries for (��m @ :h�gm C). The above generated signals are propagated through

different operators in the DFG and the average switching activities are calculated as described in

[169].

The schedulers were tested using different sets of resource constraints (RC1,RC2,RC3,RC4,RC5)

shown below.

multipliers (� at �A�Ü¼�9 and � at
Z � Z 9) and ALUs (� at �A�Ü¼�9 and � at

Z � Z 9)

multipliers (
Z

at �A�Ü¼�9) and ALUs (� at �A�Ü¼�9 and � at
Z � Z 9)

multipliers (� at �A�Ü¼�9) and ALUs (� at
Z � Z 9)

multipliers (� at �A�Ü¼�9 and � at
Z � Z 9) and ALUs (� at

Z � Z 9)

multipliers (� at �A�Ü¼�9) and ALUs (� at
Z � Z 9)

208

www.manaraa.com

Ta
bl

e
8.

4.
P

ow
er

E
st

im
at

es
fo

r
B

en
ch

m
ar

ks

M
P

G
E

st
im

at
es

(

éê)
P

ea
k

P
ow

er
(%

)
A

ve
ra

ge
P

ow
er

(%
)

P
D

P
(%

)

ë�ì �
ë�ì �
� ë�ì �
ë�ì �
� ë�ì �
� �Eí �
� � í �
� �Eî�
� � î�
� ���
�� �
�� �

1
2

3
4

5
6

7
8

9
10

11
12

e
8.

42
2.

11
74

.9
4

5.
96

29
.2

2
73

.6
1

0
72

.8
0

22
.9

1
54

.5
8

0
x

8.
42

2.
11

74
.9

4
5.

97
29

.1
0

73
.6

1
20

.8
3

72
.8

0
21

.5
6

54
.5

8
0

p
8.

42
2.

06
75

.5
3

2.
17

74
.2

3
73

.6
1

47
.2

2
72

.1
2

36
.6

8
53

.5
6

0
f

4.
26

1.
11

73
.9

4
3.

53
17

.1
4

73
.6

1
0

73
.4

7
15

.6
5

52
.2

4
0

i
6.

42
1.

72
73

.2
1

4.
54

29
.2

8
73

.6
1

47
.2

2
73

.4
7

12
.9

3
52

.2
4

0
r

4.
26

1.
08

74
.6

5
3.

00
29

.5
8

73
.6

1
45

.9
0

72
.9

24
.7

2
51

.2
2

0
i

8.
56

2.
92

65
.8

9
4.

41
48

.4
8

65
.7

4
31

.4
8

68
.3

3
18

.7
8

52
.2

4
0

i
8.

56
2.

24
73

.8
3

2.
71

68
.3

4
73

.6
1

47
.2

2
72

.9
6

30
.1

3
59

.6
0

0
r

4.
26

1.
08

74
.6

5
1.

27
70

.1
9

73
.6

1
47

.2
2

72
.3

4
34

.1
3

55
.7

1
0

h
8.

49
2.

85
66

.4
3

3.
53

58
.4

2
65

.7
4

31
.4

8
69

.2
6

32
.5

5
46

.0
9

0
a

8.
56

2.
19

74
.4

2
4.

52
47

.2
0

73
.6

0
47

.2
0

73
.1

8
30

.1
4

53
.0

6
0

l
4.

26
1.

06
75

.1
2

1.
63

61
.7

4
73

.3
3

45
.3

5
72

.7
1

24
.6

4
50

.8
5

0
a

5.
66

1.
46

74
.2

0
2.

92
48

.4
1

73
.5

9
0

74
.0

0
22

.0
0

59
.4

0
0

r
5.

66
1.

46
74

.2
0

3.
00

47
.0

0
73

.5
9

0
74

.0
0

20
.4

4
59

.4
0

0
f

5.
66

1.
40

75
.2

7
2.

97
47

.5
3

73
.0

2
0

71
.3

3
18

.8
9

57
.2

0
0

A
ve

ra
ge

R
es

ul
ts

73
.4

2
47

.1
0

72
.5

0
27

.4
1

72
.3

8
24

.4
1

54
.1

3
0

209

www.manaraa.com

1 2 3 4 5
0

20

40

60

80

Different Benchmark Circuits −>

M
P

G
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

20

40

60

80

Different Benchmark Circuits −>

P
ea

k
P

ow
er

 R
ed

uc
tio

n
(%

)
−

>

1 2 3 4 5
0

20

40

60

80

Different Benchmark Circuits −>

A
vg

 P
ow

er
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

10

20

30

40

50

60

Different Benchmark Circuits −>

P
D

P
 R

ed
uc

tio
n

(%
)

−
>

Figure 8.3. Average Reductions using DFC Scheme

The reason behind choosing the sets of resource constraints is that it covers a good representive of

types of resources at different operating voltages. The number of allowable voltage levels being

two (�A�Ü¼�9�: Z � Z 9) and maximum number of allowable frequencies being three. The experimental

results for various benchmark circuits are reported in Table 8.4 for all three schemes for resource

constraints RC2, RC3, and RC5. The power estimation step includes the power consumption of

the overheads. In case of MVDFC scheduling the frequencies found out are ¼����D*úã ��:hSD*úã��
and �7RD*úã�� . For MVMC and SVSF scheduling scheme the operating frequency (r � C) is SD*úã�� .
The table also reports the average reduction for different benchmarks averaged over all resource

constraints. It is obvious from the table that the reductions using MVDFC scheme are appreciable,

on the other hand, for the MVMC scheme there is no reduction in %'Ä % . The average results over

all five resource constraints are shown in Fig. 8.3 and 8.4.

210

www.manaraa.com

1 2 3 4 5
0

10

20

30

40

50

60

Different Benchmark Circuits −>

M
P

G
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

10

20

30

40

Different Benchmark Circuits −>

P
ea

k
P

ow
er

 R
ed

uc
tio

n
(%

)
−

>

1 2 3 4 5
0

5

10

15

20

25

30

Different Benchmark Circuits −>

A
vg

 P
ow

er
 R

ed
uc

tio
n

(%
)

−
>

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Different Benchmark Circuits −>

P
D

P
 R

ed
uc

tio
n

(%
)

−
>

Figure 8.4. Average Reductions using Multicycling Scheme

In order to study the power consumption per cycle, we plotted the power profile for different

benchmarks over all the control steps (clock steps). Fig. 8.5, 8.6 and 8.7 show power profile

for benchmarks for resource constraints RC2, RC3, and RC5 respectively. The curves labeled

as ”SF” correspond to the profile when the schedule is operated at a single frequency (which is

the maximum frequency of slower operator, multiplier) and single voltage. The profiles labeled

as ”DFC” correspond to the case when dynamic clocking and multiple voltage scheme is used.

Similarly, the profiles labeled as ”MC” is for the MVMC scheme. The effectiveness of the proposed

scheduling schemes is obvious from the figures.

211

www.manaraa.com

1 2 3 4
0

5

10

15

20

(1) EXP

SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

1 2 3 4 5 6
0

5

10

15

20

25

30

(2) FIR

SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

1 2 3 4 5 6
0

5

10

15

20

25

30

(3) IIR
SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

1 2 3 4 5 6
0

5

10

15

20

25

30

(4) HAL

SF

DFC

MC

Control steps −>
C

yc
le

 p
ow

er
 p

ro
fil

e
−

>

Figure 8.5. Power Profiles for Benchmarks (for RC2)

1 2 3 4 5
0

5

10

15

20

(1) EXP

SF

DFC
MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

0 2 4 6 8
0

5

10

15

20

(2) FIR

SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

0 2 4 6 8
0

5

10

15

20

(3) IIR
SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

0 2 4 6 8
0

5

10

15

20

(4) HAL
SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

Figure 8.6. Power Profiles for Benchmarks (for RC3)

212

www.manaraa.com

1 2 3 4 5
0

5

10

15

20

(1) EXP

SF

DFC
MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

0 2 4 6 8
0

5

10

15

20

(2) FIR

SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

0 2 4 6 8
0

5

10

15

20

(3) IIR

SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

0 2 4 6 8
0

5

10

15

20

(4) HAL
SF

DFC

MC

Control steps −>

C
yc

le
 p

ow
er

 p
ro

fil
e

−
>

Figure 8.7. Power Profiles for Benchmarks (for RC5)

8.6 Conclusions

The reduction of cycle power fluctuation is important for a CMOS circuit. This paper ad-

dresses power fluctuation reduction at the behavioral level using low power datapath scheduling

techniques. Three datapath scheduling schemes, (i) using single supply voltages and single fre-

quency (SVSF), (ii) using multiple supply voltage and dynamic clocking (MVDFC) and (iii) using

multiple supply voltage and multicycling (MVMC) have been introduced. We used ILP based opti-

mizations for the three modes of datapath operations. The results of MVDFC and MVMC schemes

were compared with that of SVSF scheme. In dynamic frequency clocking scheme significant

reduction could be achieved in mean power gradient, peak power and average power alongwith re-

ductions in power delay product. The results clearly indicate that the dynamic frequency clocking

is a better scheme than the multicycling approach for power minimization. The effectiveness of the

scheduling schemes in the context of pipelined datapath and control intensive applications need to

be investigated.

213

www.manaraa.com

CHAPTER 9

VLSI DESIGN FOR DIGITAL WATERMARKING OF IMAGES

The research in digital watermarking is well matured. Several watermarking algorithms have

been proposed for image, video, audio and text in the current literature. Digital Watermarking is the

process that embeds data called a watermark into a multimedia object such that watermark can be

detected or extracted later to make an assertion about the object. The software implementation of

the proposed algorithms are significantly large, whereas the hardware implementation of the algo-

rithms is lacking. The hardware implementation has advantages over the software implementation

in terms of low power, high performance, and reliability. In this chapter, we develop hardware

system that can insert invisible robust, invisible fragile and visible watermark in the image. The

hardware module can be easily incorporated in JPEG encoder to develop a secure JPEG encoder.

An outline of such an secure JPEG encoder is provides in Fig. 9.1 [176]. The secure JPEG codec

can be a part of a scanner or a digital camera so that the digitized images are wateramarked right at

the origin. The proposed watermarking chip can also directed integrated with any existing digital

still camera. We provide the schematic view of a still camera having inbuilt watermarking chip in

Fig. 9.2, call such an camera as a ”secure digital still camera” (S C DC).

This chapter is organized as follows. We first discuss design and implementation of spatial

domain invisible-robust and invisible-fragile watermarking chip. Followed by a design and imple-

mentation of a chip that can insert one or two of visible watermarks in an image in spatial domain.

Finally, a DCT domain visible and invisible-robust watermarking chip has been discussed.

9.1 Invisible Watermarking in Spatial Domain

In this section, we propose a VLSI architecture [176] that can insert both invisible-robust and

invisible-fragile watermarks in spatial domain. Depending on the user’s requirement, it can insert

214

www.manaraa.com

Table
Quantization

Watermark
Insertion
Module

Watermark

Input
Image

Encoder Model

Image
CompressedQuantizer

Entropy

Encoder
DCT

(a) Spatial Domain Watermark

DCT

Watermark
Insertion
Module

Watermark
Table

Quantization

Input
Image

Encoder Model

Image
CompressedQuantizer

Entropy

Encoder

(b) DCT Domain Watermark

Figure 9.1. Secure JPEG Encoder : Block Level View [176]

Controller

Interface

and

Watermarking

Controller

Input

Memory

(Flash, SDRAM)

DSP

Processor

Image

Sensors

A/D

Converter

Output

Watermarking Processor

Watermarking

Datapath

Figure 9.2. Secure Digital Still Camera : Schematic View

215

www.manaraa.com

either of the watermarks or both. The following watermarking insertion algorithms are imple-

mented : (i) the invisible-robust algorithm from [177, 178] and (ii) the invisible-fragile algorithm

proposed by the authors from [83, 72]. Both the algorithms are quite different and are proposed

recently.

9.1.1 Spatial Domain Invisible Watermarking Algorithms

In this section, we describe the algorithms (invisible-robust and invisible-fragile) chosen for

VLSI implementation. We outline the insertion and detection methods in brief with the modifi-

cations necessary to facilitate the hardware implementation. The notations needed for stating the

algorithms are given in Table 9.1.

Table 9.1. Notations used to Explain Spatial Domain Watermarking AlgorithmsU
: Original image (gray image)�
: Watermark image (binary or ternary image). ¥ :�0�0 : A pixel locationU � : Watermarked imagep·ï G p·ï : Image dimensionp � G p � : Watermark dimension;Ñ:<;�@7:<;PC : Watermark embedding functionsÄ : Watermark detection function� : Neighborhood radiusU i : Neighborhood image (gray image)ð
: Digital (watermark) key��@4:h��C : Scaling constants (watermark strength)

9.1.1.1 Invisible Robust Algorithm

A block diagram of the watermark insertion scheme is shown in Fig. 9.3(a) [177, 178]. The

watermark
�

is a ternary image having pixel values
J
0,1 or 2

_
. These values are generated using

the digital key
ð

. The watermark insertion is performed by altering the pixels of original image as

216

www.manaraa.com

Watermark

EmbeddingGeneration

Watermark

Watermark

TernaryWatermark

Input

Image

Watermark

Key

Power

Watermarked

Image

(a) Watermark Insertion

Watermark

Generation

Watermark

Watermark

TernaryWatermark

Image

Key

Test

Threshold
Detection

Authentic ?

(b) Watermark Detection

Figure 9.3. Invisible Robust Watermarking in Spatial Domain [177, 178]

follows.

U � . ¥ :�0�0T
ÉÊÊÊÊË ÊÊÊÊÌ
U . ¥ :�0�0 if

� . ¥ :�0A0T ?";'@ � U . ¥ :�0A0º: U i . ¥ :�0�0 � if
� . ¥ :�0A0T ��;PC � U . ¥ :�0A0º: U i . ¥ :�0�0 � if
� . ¥ :�0A0T �� (9.1)

The encoding functions ;1@ and ;PC are defined as follows, where ��@ X " and ��C X " .
; @ . U : U i 0 .}��d�� @ 0 U i . ¥ :�0�0iO � @ U . ¥ :�0�0;PCD. U : U i 0 .}��d���@£0 U i . ¥ :�0�0Td���C U . ¥ :�0�0 (9.2)

It may be noted that the above functions are slightly different from the original algorithm, where �ÇC
is negative and the second encoding function involved addition, instead of subtraction. However,

these changes do not affect the overall encoding-decoding scheme, since we make changes in

decoding functions accordingly.

The neighborhood image pixel gray value is calculated as the average gray value of the neigh-

boring pixels of the original image for a particular neighborhood radius � . For example, for neigh-

217

www.manaraa.com

borhood radius �� a� , it is calculated as :

U i . ¥ :�0A0� ï ó m ³ @B® ü ô ³ ï ó m ³ @B® ü ³ @ ôC O U . ¥ :�0�O��q0� (9.3)

The scaling .}�
dà��@º0 is used to scale
U i to ensure that watermarked image gray value

U � never

exceeds the maximum gray value for 8-bit image representation corresponding to pure white pixel.

The neighborhood radius � determines the upper bound of the watermarked pixels in an image. It

may be noted that a simple average could have been ï ó m ³ @B® ü ô ³ ï ó m ³ @B® ü ³ @ ô ³ ï ó m ® ü ³ @ ô� , but we used the

above method of averaging to simplify the hardware implementation, since the division by two can

be implemented using a right shift by 1-bit operation.

The block diagram for watermark detection is provided in Fig. 9.3(b). The first step detection

process is the generation of watermark
�

using the watermark key
ð

. Next, the watermark is

extracted from the test (watermarked) image using the detection function given below.

� (. ¥ :�0�0� ÉÊË ÊÌ � if
U � . ¥ :�0�0�d U i . ¥ :�0�0 X "� if
U � . ¥ :�0�0�d U i . ¥ :�0�0 ¹ " (9.4)

By comparing the original ternary watermark image
�

and the extracted binary watermark image� (, the ownership can be established when the detection ratio is larger than a predefined threshold

as explained in [177, 178].

9.1.1.2 Invisible Fragile Algorithm

The invisible fragile watermark insertion is carried out as follows (Fig. 9.4(a) [83, 72]). A

pseudo-random binary-sequence
J
0,1
_

of period p is generated using a linear shift register. The

period p is equal to the number of pixels (p � G p �) of the image. The watermark is generated

by arranging the binary sequence into blocks of size ¼ GÓ¼ or RÑGHR . The size of the watermark is

the same as the size of the image. The bit planes of the input image are derived and watermark is

inserted in the appropriate bit plane such that
À p �aX

threshold. Assuming that the watermark in-

sertion is to be performed in � | y bit plane, the watermark insertion process is given by the following

218

www.manaraa.com

Watermarked

Image

Watermark

Construction
Bit−plane

Number

Input

Image Image
Bit−plane

XOR
Watermark

Image

Bit−plane

Merging

(a) Watermark Insertion

Watermark

Insertion

Watermark

Construction

Input

Image

Number

Bit−plane

Image

Test

Watermark

Detection

Authentic ?

(b) Watermark Detection

Figure 9.4. Invisible Fragile Watermarking in Spatial Domain [83, 72]

expression. U �èñ "-�Û�)dà�còz. ¥ :�0A0 U ñ "1�Û�)d[�còz. ¥ :�0�0U � ñ �Uòz. ¥ :�0�0 U ñ �Uòz. ¥ :�0A0 XOR
� . ¥ :�0�0U �èñ �'ON�P� �¯òz. ¥ :�0A0 U ñ �'O��P� �¯òz. ¥ :�0�0 (9.5)

The finding of the candidate bit plane for watermark insertion is an iterative process. We have

chosen the � F f .2�Ó a��0 bit plane as the candidate for watermark insertion (for LSB �Ó ="). After

merging all the bit planes, the watermarked image
U � is obtained.

For image authentication purpose, the testing paradigm provided in [83, 72] is used. To con-

struct the testing paradigm, the cross-correlations of the original image and the watermark image,

and the cross-correlations of the watermarked image and the possibly forged test image are calcu-

lated. Then, based on the cross-correlations, the test statistics is determined. The test statistics is

the basis of the test paradigm.

219

www.manaraa.com

α
1

α
2

α1(1−)

MUX
2 x 1

MUX
2 x 1

MUX
2 x 1

Adder / Subtractor

Adder 1 Adder 2

Multiplier 2Multiplier 1

Shift
Register

Address
Decoder

RAM

Image

P3P2P0 P1

8 8

8

88 8

8

Address
Decoder

IM_DATA_IN

IM_DATA_SEL

Watermark
RAM

WM_DATA_SEL

WM_DATA_IN

Figure 9.5. Datapath for Robust Watermarking

9.1.2 VLSI Architecture for Invisible Spatial Domain Watermarking

In this section, we discuss the proposed architectures for the algorithms discussed in the previ-

ous section.

9.1.2.1 Architecture for Robust Watermarking

The datapath for invisible robust watermarking is shown in Fig. 9.5. The image RAM is used

to store the original image, which is to be watermarked. The image data can be written to the

image RAM by activating proper control signals. The watermark RAM serves as a storage space

for watermark data. The watermark data can either be generated using the shift register or given

as an external input by the user. In this hardware design, it is assumed that at any point of time, a�D�DÖ1G �D�DÖ image can be stored in the image RAM and a �7�DR-GH�7�DR watermark can be stored in the

watermark RAM. It is possible to watermark only a �7�DRiG��7�DR region of the original image at a time,

whereas the full image can be watermarked if the process is repeated for the other regions (total in

four times for the assumed size). The region of the original image to be watermarked is described

in terms of five parameters, such as top left, top right, center, bottom left, and bottom right and

address decoders are used to determine the proper locations.

220

www.manaraa.com

MUX
2 x 1

MUX
2 x 1

RAM

Image

P3P2P0 P1

XOR

1
1

Shift
Register

Address
Decoder

WM_DATA_IN

WM_DATA_SEL

Decoder
Address

Watermark

RAM

IM_DATA_IN

IM_DATA_SEL

Figure 9.6. Datapath for Fragile Watermarking

The invisible robust watermark insertion scheme involves adding (or subtracting) a constant

time the image pixel gray value to (from) a constant time of the neighborhood function. The

constants are � @ and � C , the values of which determine the strength of the watermark. The four

output lines from the image RAM provide the pixels
U . ¥ :�0A0 , U . ¥ :�0ÑOM�q0 , U . ¥ Oa��:�0�0 and

U . ¥ O��:�0ÑO �q0 for the row-column address pair . ¥ :�0A0 . The neighborhood function specified by Eqn.

9.3 is computed as follows. First, the
U . ¥ :�0)Oa�q0 and

U . ¥ O=��:�0¶O��q0 are given to the adder1 as

input. The resulting sum and carry out from adder 1 are fed to adder 2 alongwith
U . ¥ OM��:�0�0 .

The resulting sum of the adder 2 is the neighborhood function value. The division by two is

performed by shifting the results bit right by one bit, consequently discarding the rightmost bit

(LSB). The scaling of the neighborhood function is achieved by multiplying it with .}��dH��@£0 using

the multiplier 2. At the same time, the scaling of the image pixel gray values is performed in

multiplier 1 by multiplying
U . ¥ :�0�0 with � C or � @ . The eight higher order bits of the the multipliers

are fed to the adder/subtractor unit to perform watermark insertion as per the Eqn. 9.2. Since,

we are concerned only with the integer values of the pixels, the lower eight bits of the multiplier

results are discarded, which represent the values after the decimal point. The output of the adder

/ subtractor unit (watermarked image pixels) and the original image pixel values are multiplexed

221

www.manaraa.com

α
1

α
2

α1(1−)

MUX
2 x 1

MUX
2 x 1

MUX
2 x 1

XOR

ROBUST/FRAGILE MUX
2 x 1

Adder / Subtractor

Adder 1 Adder 2

Multiplier 2Multiplier 1

Shift
Register

Address
Decoder

RAM

Image

P
3

P
2

P
0

P
1

8 8

8

88 8

8

Address
Decoder

IM_DATA_SEL

IM_DATA_IN

Watermark

RAM

WM_DATA_IN

WM_DATA_SEL

1 8

1

Figure 9.7. Datapath For Combined Spatial Domain Invisible Robust / Fragile Watermarking

based on the watermark values and are written into the image RAM if the watermark value is ”1”

or ”2”, as per Eqn. 9.1.

9.1.2.2 Architecture for Fragile Watermarking

The datapath for fragile watermark insertion is shown in Fig. 9.6. The original image is stored

in the image RAM and the watermark is created in the same way as in the case of robust water-

marking described above and is stored in the watermark RAM. For watermark insertion, the � F f
bit-line of the image pixels is fed as input to an XOR gate alongwith that of the watermark value.

The output of the XOR gate is returned to the image RAM and the � F f bit-line is over-written by

selecting appropriate control signals.

9.1.2.3 Overall Chip Architecture

The combined datapath for both robust and fragile watermarking is shown in Fig. 9.7. The

datapath is obtained by stitching the two datapaths from (Fig. 9.5 and Fig. 9.6) using multiplexers,

which in turn give rise to additional control signals. The controller that drives the datapath is

222

www.manaraa.com

S0

S1

S2

S4

S3

START = 0

START = 1

WM_COMPLETED = 0

WM_COMPLETED = 1

IM_COMPLETED = 0
IM

_C
O

M
P

L
E

T
E

D
 =

 1

read/create watermark
Read image and

Display the watermarked image

Initial state

Write watermarked pixels

Perform watermarking

IM_COMPLETED = 1

IM_COMPLETED = 0

Figure 9.8. Controller For Combined Spatial Domain Invisible Robust / Fragile Watermarking

shown in Fig. 9.8. The controller has five states, such as S0, S1, S2, S3 and S4. The state S0 is the

initial sate. In state S1, the image and watermark data are written into the respective RAMs. The

image and the watermark pixels are read from the RAMs in state S2 and watermarking insertion

is performed. In state S3, watermarked pixels are written back to the image RAM. In state S4, the

watermarked image is ready in the RAM. The control signals and their functional descriptions are

given in Table 9.2.

9.1.3 Implementation of Spatial Domain Invisible Watermarking Chip

In this section, we discuss the implementation of the integrated architecture which combines

the two architectures from the previous section. The implementation of the watermarking datapath

and controller was carried out in the physical domain using the Cadence Virtuoso layout tool using

bottom-to-top hierarchical design approach. The design involved the construction of three main

modules, the memory, the watermarking module (datapath) and the controller unit. Each of the

three modules were designed individually through modularization and later interfaced with each

other. The layouts of the gates at the lowest level of hierarachy are drawn using the CMOS standard

223

www.manaraa.com

Table 9.2. Control Signals for Spatial Domain Invisible Watermarking Chip

IM ADDR COUNT : increment signal for the counters used to generate address for image
WM ADDR COUNT : incre. signal for the counters used to generate address for watermark
IM READ/WRITE : image RAM read (1) or write (0)
WM READ/WRITE : watermark RAM read or write
IM DATA SELECT : select input or watermarked image
WM DATA SELECT : select input or generate watermark
IM ADDR SELECT : select location of image
WM ADDR SELECT : select address of watermark
START : watermarking begins when set to 1
IM COMPLETED : set to 1 when all the pixels of the image are covered
WM COMPLETED : set to 1 when all the pixels in watermark are covered
BUSY : high as long as the watermarking process continues
DATA READY : high when watermarked image is ready to be read
ROBUST/FRAGILE : choose between robust or fragile

cell design approach. We designed a standard cell library containing basic gates, such as AND, OR,

NOT and 1-bit RAM cell.

The memory module involves two read/write memory structure, one for �D�DÖÑGs�D�DÖ size origi-

nal/watermarked image and other for �7�DRÑG!�7�DR size watermark. The bit size for the image RAM

is R#d bits and for the watermark RAM, it is �#d bits. The basic building block for a memory module

is a Ö#d transistor static RAM cell available in the cell library. We have chosen a SRAM instead of

a DRAM due to its shorter read and write cycles. The memories are built as � G-� arrays of SRAM

cells and are addressed using row and column address decoders. Each decoder is implemented as

a á×d bit counter with additional AND-logic to address � l cells.

The watermarking module (datapath) involves the implementation of two watermarking algo-

rithms as described in Section 9.1.1. The main components of this module are two 8-bit adders,

two 8-bit multipliers and a 8-bit adder/ subtractor. Each adder is constructed using 1-bit adders

in a ripple-carry manner. The adder/subtractor unit is obtained from the adder using XOR gates.

The carry inputs to the adder/ subtractor and one of the inputs to the XOR gate are set to high

whenever the watermark pixel value is ”2” so that a subtraction is carried out as required for the

robust watermarking encoding function (Eqn. 9.2). An 8-bit parallel array multiplier is built using

full-adders and AND gates to implement multiplication operations with reduced delay.

224

www.manaraa.com

Several multiplexers are used at appropriate places in the design to select one of the incoming

lines. Each of such multiplexer is implemented using a combination of transmission gates. Three

asynchronously resettable registers are designed to encode the five states of the controller depicted

in Fig. 9.8. At anytime, the three registers could be reset by the user to return the controller to its

intial state and from there, the watermarking function could be started afresh.

(a) Datapath Layout (b) Controller Layout

Figure 9.9. Layout of the Invisible Spatial Domain Watermarking Datapath and Controller

Table 9.3. Power, Area Details for Individual Units

Modules Gate Count Power .bá � 0 Delay .b��Á�0
Datapath 4547 1.1931 0.9158
Controller 233 0.0045 0.3901
RAM 1183,744 21.8012 2.3891

Each of the above mentioned modules is implemented and tested separately and then connected

together to obtain the final chip. The number of gates, power and areas of each module is shown in

Table 9.3 for operating voltage of
Z � Z 9 . The statistics are obtained using HSPICE for "#� Z ��Õ MO-

SIS SCN3M SCMOS technology. It is evident from the above statistics that the RAM consumes

225

www.manaraa.com

Figure 9.10. Layout of RAM (Zoomed view of a portion is shown)

most amount of power. If we assume that the proposed chip is to be used as a module within a

complete JPEG enoder, then the memory module could be avoided in the watermarking datapath

circuit. The layout of the datapath is shown in Fig. 9.9(a). and the layout of the controller is shown

in Fig. 9.9(b). The layout of RAM is shown in Fig. 9.10. This shows a zoomed view of a small

portion of the RAM. The complete layout and the floor plan of the watermarking chip is given in

Fig. 9.11. The pin diagram for the chip showing the inputs and the outputs is given in Fig. 9.12.

The overall design statistics of the chip are in Table 9.4.

Table 9.4. Overall Chip Statistics

Area (with RAM) �7�A�Ô"��7�ÑG×�¿¼����D�D��áeá C
Number of gates (with RAM) �D�7RDR ð
Number of gates (without RAM) ¼�RD��"
Operating Voltage

Z � Z 9
Clock frequency (with RAM) �7�#�7*úã��
Clock frequency (without RAM) ��¼��D*úã �
Number of I/O pins �D�
Power (with RAM) ��¼Dá �
Power (without RAM) �A�Ô"���¼��¯á �

226

www.manaraa.com

Figure 9.11. Layout of the Proposed Spatial Domain Invisible Watermarking Chip

9.1.4 Results and Conclusions

The verification of the chip implementation was performed by watermarking on several test

images, examples of which are shown in Fig. 9.13 and Fig. 9.14. The visual inspection of the

images illustrate the quality of the watermarking. As a quantitative measure of the perceptibility of

the watermark, we used the expression for signal-to-noise ratio given in Eqn. 9.6 as suggested by

ROBUST/FRAGILE

SPATIAL DOMAIN

WM_DATA_SELECT

ENCODER

WATERMARKING

INVISIBLE

DATA_OUT

BUSY

DATA_READY

IM_DATA_IN

WM_DATA_IN

START

RESET

CLOCK

Figure 9.12. Pin Diagram for the Proposed Spatial Domain Invisible Watermarking Chip

227

www.manaraa.com

(a) Original Shuttle (b) Robust Watermarked (c) Fragile Watermarked

Figure 9.13. Spatial Domain Invisible Watermarked Shuttle

(a) Original Bird (b) Robust Watermarked (c) Fragile Watermarked

Figure 9.14. Spatial Domain Invisible Watermarked Bird

[159, 83, 72]. À p � =�4" Ù �qÚ # Var ï
Var ï ÿ % (9.6)

The Var ï is the variance of the original input image and the Var ï ÿ is the variance of the error

image (difference between original input image and watermarked image). We calculated the
À p �

using the original and the watermarked image with the help of a software simulator. The
À p � for

various watermarked images were in the range of � Z 6U;=d��D��6E; .

In this work, we presented a watermarking encoder that can perform invisible robust, invisible

fragile watermarking and the combination of both in spatial domain. To our knowledge, this is the

228

www.manaraa.com

first watermarking architecture having both functionalities. The chip can be easily integrated in

any existing JPEG encoder to watermark the images right at the source end. The disadvantage of

the watermarking algorithms implemented is that the processing needs to be done pixel by pixel.

In future, we are aiming to investigate block by block processing. The implementation of a low

power high performance watermarking decoder which will be a part of JPEG decoder is currently

under implementation.

9.2 Visible Watermarking in Spatial Domain

In this section, we present a new VLSI architecture for two visible watermarking schemes

presented in the literature. We implement the VLSI architecture using "#� Z ��Õ CMOS technology.

The proposed watermarking chip is designed aiming at easy integration with any existing digital

camera framework [179]. To our knowledge, this is the first watermarking chip implementing

visible watermarking schemes.

9.2.1 Watermarking Algorithms

In this section, we discuss the image watermarking algorithms whose VLSI architecture is pro-

posed. We outline the schemes in brief with the modifications necessary to facilitate the hardware

implementations. The following notations are needed for description of the algorithms.

9.2.1.1 Visible Watermarking Algorithm 1 :

In this subsection, we discuss the visible watermarking algorithm proposed in [73]. The wa-

termark has three goals, such as, (i) the visible watermark should identify the ownership, (ii) the

visual quality of the host image should be preserved, (iii) the watermark should be difficult to re-

move from the host image. To satisfy these three conflicting criteria, schemes have been proposed

for adding watermark with the orginal image. The watermarked image is obtained by adding a

scaled gray value of the watermark image to the host image. The amount of scaling is done in such

a way that the alternation of each original image pixel occurs to a perceptual equal degree. The

229

www.manaraa.com

Table 9.5. List of Variables used in Algorithm ExplanationU
: Original (or host) image (a grayscale image)�
: Watermark image (a grayscale image).báû:B��0 : A pixel locationU � : Watermarked imagep ï G p ï : Original image dimensionp � G p � : Watermark image dimension¥ : The �#| y block of the original image

Uó : The � | y block of the watermark image
�

¥ � F : The �#| y block of the watermarked image
U �� : Scaling factor for � | y block (used for host image scaling)� : Embedding factor for ��| y block (used for watermark image scaling)Õ ï : Mean gray value of the original image

UÕ ï : Mean gray value of the original image block ¥ ô ï : Variance of the original image block ¥ ��l�kh� : The maximum value of � ��lTm«F : The minimum value of � ��l�k<� : The maximum value of � ��lTm«F : The minimum value of � U õ�y4m | � : Gray value corresponding to pure white pixel� ï : A global scaling factor$�@4:º$oC�:º$ � :º$ â : Linear regression co-efficients

original formulas have been simplifed to the following [75].

U � .báû:B��0� ÉÊË ÊÌ U .báû:B��0gO � .báû:B��0 Ý ï �}� ïöõ ©� rc� ÷�÷Åø ß Ý ï ó l�® F ôï �}� ï�õ © ß zù � ï for ï ó l�® F ôï �}� ïöõ © X "#�Ô"D"�RDRD�DÖU .báû:B��0gO � .báû:B��0ûÝ ï ó l�® F ôú T � � � ß � ï for ï ó l�® F ôï �}� ïöõ © Í["#�Ô"D"�RDRD�DÖ (9.7)

The scaling factor � ï determines the strength of watermark.

Our aim is to implement the watermarking algorithms in a hardware. The above equation is

simplified so that the hardware implementation becomes easier. At the same time, care is taken to

make sure that the hardware is as accurate as the software implementations. We assume
U õ�y4m | �P �D�D� and simplify the above equations to the following.

U � .báû:B��0� ÉÊË ÊÌ U .báû:B��0gO � 5û÷c� T ú ø�÷ � � .báû:B��0o. U .báû:B��0B0 zù for
U .báû:B��0 X �A���D�DR ZU .báû:B��0gO � 5ûú T � � � � � .báû:B��0 U .báû:B��0 for
U .báû:B��0tÍ[�A���D�DR Z (9.8)

230

www.manaraa.com

The above expression involves cubic root calculation, which could complicate the hardware im-

plementation. So, we further simplify the above expressions and remove the cubic root function

with a piecewise linear model. We divide the gray values range ñ "#: U õ�y4m | ��ò to four ranges, such

as ü�"#: ï �}� ï�õ ©âþý , ü ï �}� ïöõ ©â : ï �}� ï�õ ©C ý , ü ï �}� ï�õ ©C : � ï �}� ï�õ ©â ý , and ü � ï �}� ïöõ ©â : U õ�y4m | � ý . We fit four linear regres-

sion co-efficients that best approximates the cubic root in each of these ranges. Moreover, we

roundup the fraction involved in the comparison operation and the final simplified expression that

is implemented using hardware is as follows.

U � .báû:B��0�
ÉÊÊÊÊÊÊÊÊÊÊÊË ÊÊÊÊÊÊÊÊÊÊÊÌ

U .báû:B��0�O � ûú T � � � � � .báû:B��0 U .báû:B��0 for
U .báû:B��0oÍ[�U .báû:B��0�O Ý 5û � ñ÷c� T ú ø�÷ ß � .báû:B��0 U .báû:B��0 for � ¹ U .báû:B��0tÍ[Ö�¼U .báû:B��0�O Ý 5û � z÷c� T ú ø�÷ ß � .báû:B��0 U .báû:B��0 for Ö�¼ ¹ U .báû:B��0oÍW�7�DRU .báû:B��0�O Ý 5û � ù÷c� T ú ø�÷ ß � .báû:B��0 U .báû:B��0 for �7�DR ¹ U .báû:B��0tÍW�7SD�U .báû:B��0�O Ý 5û �<ÿ÷c� T ú ø�÷ ß � .báû:B��0 U .báû:B��0 for �7SD� ¹ U .báû:B��0 ¹ �D�DÖ

(9.9)

9.2.1.2 Visible Watermarking Algorithm 2 :

In this subsection, we discuss the visible watermarking algorithm proposed in [83]. The pixel

gray values are modified based on local and global statistics. The watermaking insertion process

consists of the following steps.

3 Both host image (one to be watermarked)
U

and the watermark (image)
�

are divided into

blocks of equal sizes (the two images may be of unequal size).

3 Let ¥ denote the �#| y block of the original image
U

and ó denote the �#| y block of the

watermark
�

. For each block (¥), the local statistics; mean Õ ï and variance ô ï are

computed. The image mean gray value Õ ï is also found out.

3 The watermarked image block is obtained by modifying ¥ as follows. Assuming that �
and � are scaling and embedding factors respectively, depending on Õ ï and ô ï of each

host image block.

¥ � N� ¥ O8� ó �V =��:h�A�E�E� (9.10)

231

www.manaraa.com

The choice of � and � are governed by certain characteristics of human visual system (HVS)

and mathematical models are proposed so that the perceptual quality of the image are not degraded

due to watermark addition. The � and � are obtained as follows.

3 The � and � for edge blocks are taken to be �ilok<� and ��lTm«F respectively.

3 The � and � are found out using the following equations.

� @�� û � L7Ï�ä � d^. ÂÕ ï d ÂÕ ï 0 C �� Âô ï � �ÇdÖL4Ï�ä � d1. ÂÕ ï d ÂÕ ï 0 C �¯� (9.11)

Where, ÂÕ ï and ÂÕ ï are normalised values of Õ ï and Õ ï , and Âô ï are normalised logarithm

values of ô ï .
3 The � and � are scaled to the ranges (�ilTm«F , ��l�k<�) and (�6l�m«F , �6lok<�) respectively, where��lTm«F and ��l�kh� are minimum and maximum values of scaling factor, and �glTm«F and ��l�kh� are

minimum and maximum values of embedding factor. These parameters determine the extent

of watermark insertion. A linear tranformation is used to scale current � and � values to

the ranges (� lTm«F , � l�kh�) and (� l�m«F , � lok<�), respectively. Let current values of � be written

as � � , and � �lTm«F and � �l�kh� , respectively denote the current minimum and maximum values.

Similarly, let current values of � be written as � � , and � �lTm«F and � �lok<� , respectively denote

the current minimum and maximum values. The � and � values are scaled as follows.

� Ý ² §�� ´ ²�ï î ª ² §�� ´ ª ²�ï î ß � � O Ý ��l�kh�'d Ý ² §�� ´ ²�ï î ª ² §�� ´ ª ²�ï î ß � �l�k<� ß� Ý�~ ² §�� ´ ~ ²�ï î~ ª² §�� ´ ~ ª²�ï î ß � � O Ý �6l�kh�'d Ý6~ ² §�� ´ ~ ²�ï î~ ª² §�� ´ ~ ª²�ï î ß � �l�kh� ß (9.12)

We used first-order derivatives for edge detection. For horizontal edge detection, we compute

the horizontal gradient as :

, y .báû:B��0� U .báû:B��0�d U .bá O���:B��0 (9.13)

232

www.manaraa.com

The vertical gradient is computed as follows for vertical edge detection.

, � .báû:B��0� U .báû:B��0�d U .báû:B�YO��q0 (9.14)

The amplitude of an edge is calculated as,

,¶.báû:B��0� MÞÜ, y .báû:B��04Þ7OWÞÜ, � .báû:B��04Þ (9.15)

The mean amplitude for a block is computed as,

,��) �p�� G p�� µ l µ F ,¶.báû:B��0 (9.16)

When the mean amplitude for a block exceeds a predefined threshold, we declare it as an edge

block. The values of á and � correspond to the pixel locations of individual blocks with reference

to the original image pixel location.

The mean gray value of a block is calculated as the average of gray values of all pixels in the

image block. The mean gray values are normalized with pure white pixel gray value. Thus, we

have normalized mean gray values of a block as,

ÂÕ ï �p�� G p��
�U õ�y4m | � % µ l µ F U .báû:B��0 (9.17)

Where, á and � are the pixel locations of the � | y image block; same as their locations in the

original image. The normalized standard deviation of gray values for the ��| y block is calculated as

follows.

Âô ï �p�� G p��
�U õuy7m | � % µ l µ F ºººº U .báû:B��0�d U õ�y4m | �� ºººº (9.18)

The exponential term in the Eqn. 9.11 is approximated as a power series. For "aÍÛÏ Í � ,
we have the following Taylor series approximation which was used upto the square term in our

implementation. L � µ m Ï m¥ � =��OQÏ)O �� Ï C O¬�E�E� (9.19)

233

www.manaraa.com

In the step three of the insertion algorithm, scaling needs to be done using a linear transforma-

tion. The transformation needs to find the current minimum and maximum values for both � and� over all the blocks to perform the transformation. Due to this the hardware performance is going

to be severely degraded since it has to wait till all the pixels of the images are covered to find local

statistics of all the blocks. So, we modify the above Eqn. 9.11 to ensure that the performance of the

hardware is improved with no compromise on the quality. We find � and � using the following

equations. � � lTm«F OW.2� lok<� d�� lTm«F 0 @�� û � L4Ï�ä � d^. ÂÕ ï d ÂÕ ï 0 C �� �6l�m�F'ON.c��l�k<�'d×�6lTm«F60 Âô ï � ��doL4Ï�ä � d^. ÂÕ ï d ÂÕ ï 0 C �q� (9.20)

Extensive simulations for various images show that the � and � obtained using Eqn. 9.12 and

Eqn. 9.20 are comparable (maximum difference is ��� [72]). Thus, we use Eqn. 9.20 for the �
and � calculations.

9.2.2 VLSI Architecture

In this section, we discuss the architectures proposed for the hardware implementations of the

algorithms described in Section 9.2.1. We discuss the implementation of the first algorithm and the

architecture of the second algorithm in the first subsection and the second subsection respectively.

The above two architectures are stitched to develop the proposed watermarking datapath. The

FSM based design of a controller that drives the datapath is outlined. We assume that both the

original host image and the watermark image are stored in some memory in the digital camera

framework and are available for processing. The images may be in some compression format or

may be available in raw ascii data. We need to have a corresponding decoder to decode the image

and get the uncompressed data in case it is in compressed format. The decoder implementation is

not a part of this research.

9.2.2.1 Architecture for Algorithm 1 :

The insertion operation for the first watermarking algorithm is described in Eqn. 9.7. This

insertion function is simplified to Eqn. 9.9 using a piecewise linear model such that we have a

234

www.manaraa.com

Comparator

Register

File
Multiplier Multiplier

Multiplier

Adder

W
I (m,n)

α
I

I(m,n) W(m,n)

(a) For Algorithm 1

α
k β k

Edge Detection

Unit

0 1 0 1

minβmax
α

Multiplier Multiplier

Adder

W
I (m,n)

α
k

β kand Calculation Unit

I(m,n) W(m,n)

(b) For Algorithm 2

Figure 9.15. Datapath Architectures for the Visible Watermarking Algorithms

compact and efficient hardware design, as described in the previous section. Fig. 9.15(a) shows

the architecture proposed for the first algorithm. The watermarking in this scheme is performed

pixel-by-pixel as evident from the insertion function. A register file is used to store the constants

needed to scale the image-watermark product in Eqn. 9.9. We store the constants @ú T � � � , � ñ÷c� T ú ø�÷ ,� z÷c� T ú ø�÷ , � ù÷c� T ú ø�÷ , and
�<ÿ÷c� T ú ø�÷ . The other constant � ï is assumed as a parameter, which can be changed

user to vary the watermark strength. The comparator is used to determine the range in which a

particular pixel gray value lies, such that an appropriate constant can be picked up from the register

file. The left side multiplier calculates appropriate constant times the host image pixel gray values

and the right side multiplier is used to find � ï times the watermark image pixel gray value. The

results of the above two multiplier is fed to the third multiplier which effectively calculates the

product of constants, � ï , host image pixel gray value, and watermark image pixel gray value,

respectively. The above product is added to the host image pixel gray values using the adder to

obtain watermarked image pixel gray values. The above described process has to be carried out for

all the pixels in order to obtain the watermarked image.

235

www.manaraa.com

9.2.2.2 Architecture for Algorithm 2 :

The proposed architecture for the second algorithm is shown in Fig. 9.15(b). Using the sec-

ond algorithm the watermarking insertion is performed block-by-block as described in Eqn. 9.10.

But, for each block the watermarking insertion has to be carried out pixel-by-pixel. The proposed

architecture in Fig. 9.15(b) present the operation at pixel level. The ” � and � calculation unit”

computes the � and � values for the � | y non-edge block using expression in Eqn. 9.20. The

”edge detection unit” determines if a block is an edge block or non-edge block if the ,�� exceeds a

user defined threshold, then it is an edge-block. Larger the threshold more are the blocks declared

as edge-blocks. The multiplexors help in selecting the scaling and embedding factors between the

edge and non-edge blocks. The left side multiplier calculates the scaling factors times the host im-

age pixel gray value. The right side multiplier multiplies the embedding factor with the watermark

image pixel gray value. The products from these two multipliers are added using an adder to find

the watermarked image pixel gray value. This process is repeated for all pixels in a block, and

subsequently for all the blocks in the image.� and � calculation unit : The architectural details of ” � and � calculation unit” is shown

in Fig. 9.16(a). This hardware implements Eqn. 9.20 for � and � calculation for a block at a

time. The left side adder-accumulator combination finds the sum of all the image pixel gray values

for a block. After the sum is multiplied with Ý @i	��
<i	� 	 @ï �}� ïöõ © ß , we get the normalised mean gray

value of � | y block denoted by ÂÕ ï . Since we have assumed block size of RÓGæR , and
U õuy4m | � as�D�DÖ , this evaluates to @@�÷ � r â . It may be noted that

U õ�y4m | � is �D�D� , but using �D�DÖ makes hardware

implementation easier, the latter being representable as a power of two. In the original algorithm. ÂÕ ï d ÂÕ ï 0 is the deviation of a mean gray value of a block from the image mean gray value. We

are evaluating the deviation of mean block gray value from mid-intensity of ï �}� ïöõ ©C for simplicity,

. Thus, . ÂÕ ï d ÂÕ ï 0 is computed as . ÂÕ ï d "#����0 , when normalised with
U õuy4m | � . This assumption

accelerates the hardware performance to a great extent since the block-by-block watermarking can

be performed without waiting for the global image statistics computed over the whole image before

the watermark insertion can be performed. The expression L4Ï�ä � d1. ÂÕ ï d ÂÕ ï 0 C � is computed using

the ”exponential unit”.

236

www.manaraa.com

Adder / Subtractor

Adder / Subtractor

Adder

Accumulator

Multiplier

Ik
µ

<

(− 0.5)

Ik
µ

<

Multiplier

16384

1

Adder / Subtractor

Adder

Accumulator

1

 8192

Ik
σ

<

Multiplier

Multiplier

α
max

α
min(−)

Multiplier
β min

Adder

α
min

Adder

β max β min(−)

β k α
k

I(m,n)

0.5

1

Divider

128

Exponential Unit

(a) Architecture of �
�

and
�

Calculation Unit

Adder / SubtractorAdder / Subtractor

Adder

Adder

Accumulator

Multiplier

1

 64

Comparator

Threshold
Amplitude

µG

I(m+1,n) I(m,n) I(m,n+1)

G(m,n)

Edge or Non−edge Block

(b) Architecture of Edge Detection Unit

Figure 9.16. Individual Datapath Units for Algorithm 2

The adder/subtractor unit finds the image pixel gray value absolute deviation from ï �}� ïöõ ©C . The

adder-accumulator following this accumulate the � l � F ººº U .báû:B��0�d ï �}� ï�õ ©C ººº for a block. When

this sum is multiplied with Ý @i	��
<i	� ß 	 Ý Cï �}� ïöõ © ß , which is R#�7SD� for our case, we get the normalised

standard deviation Âô ï . The right side divider divides exponential value computed before by Âô ï .
The quotient is then multiplied with ��lok<�tdµ�gl�m�F . The above product is added to �ilTm«F to evaluate� expressed in Eqn. 9.20. The exponential unit result is fed to a adder/subtractor on left side which

finds its difference from 1. The result is then multiplied with Âô ï obtained from the computations

performed before. The product obtained is then multiplied with �gl�k<�Pde�6lTm«F . This product is then

added to ��lTm«F which in turn gives the required � as per Eqn. 9.20.

237

www.manaraa.com

Edge detection unit : The architecture used to declare if a block is an edge or non-edge block is

shown in Fig. 9.16(b). The left side and right side calculate the absolute value of horizontal gradientÞÜ, y .báû:B��04Þ and absolute value of vertical gradient ÞÜ, � .báû:B��04Þ , respectively. The amplitude of an

edge ,V.báû:B��0 is calculated using the first adder. Then, the adder-accumulator combination finds

the sum of ,¶.báû:B��0 for all pixels of a block. The above sum when multiplied with Ý @i	��
<i�� ß./ úÖ�¼�0 , we get the mean amplitude ,�� for a block. The comparator compares the ,�� values with

an user defined threshold and declares the block as a edge or non-edge block.

9.2.2.3 Architecture for the Watermarking Processor :

The datapaths for both the algorithms shown in Fig. 9.15(a) and Fig. 9.15(b) are stitched

together using multiplexors and a combined datapath shown in Fig. 9.17(a) is obtained. This

datapath can perform both the watermarking insertion schemes. Both the datapaths share the same

multipliers, as it is evident from Fig. 9.17(a), the multiplexors help in selecting input for the

multipliers. The ”Select” signal helps in choosing one of the watermarking scheme. When Select

is ”0” first algorithm is used and when select is ”1”, second algorithm is performed.

The controller that drives the datapath is shown in Fig. 9.17(b). The controller has six states,

such as Init, ReadBlock, WriteBlock, ReadPixel, WritePixel, and DisplayImage. When the Start

signal is ”1” the watermarking process is initiated. Depending on the Select signal, one of the

watermarking schemes is chosen and the corresponding datapath needs to be driven to carry out

the watermarking process.

When Select is ”0”, first watermarking scheme is chosen. At the ReadPixel state a pixel is read

and the watermarked pixel is written at the WritePixel state after watermarking is performed. The

process continues as long as ImageCompleted is ”0” so that watermarking can be performed over

all the pixels of the image.

The second algorithm is chosen when the Select is ”1”. In the ReadBlock state the pixel gray

values are read for a block. The watermarked image block is written in the WriteBlock state once

the watermarking is completed for the block. The system loops between the two states as long as

all the blocks of the host image are not watermarked. Once, the watermarking is performed over

238

www.manaraa.com

α
k β k

Edge Detection

Unit

0 1 0 1

minβmax
α

α
k

β kand Calculation Unit

0 1

Register File

Comparator

0 1

α
I

Multiplier Multiplier

Multiplier

0 10 1

I(m,n) W(m,n)Select

Adder

W
I (m,n)

(a) Merged Datapath for Algorithms 1 and 2

Read

Pixel

Read

Block

Write

Block

Display

Image

Write

Pixel

Init

BlockCompleted=1

BlockCompleted=0

BlockCompleted=1

ImageCompleted=1

BlockCompleted=1

ImageCompleted=1

ImageCompleted=1

ImageCompleted=0

ImageCompleted=0

BlockCompleted=0

Start=0

Select=1

Start=1
Start=1

Select=0

ImageCompleted=0

(b) Controller for the Merged Datapath

Figure 9.17. Architecture for the Proposed Watermarking Processor

whole image, the ImageCompleted signal is set to ”1”; thus, completing the watermarking process.

State DisplayImage is the state at which the watermark image is ready in the digital camera storage.

9.2.3 Chip Implementation

The implementation of the watermarking datapath and controller was carried out in the physical

domain using the Cadence Virtuoso layout tool using bottom-to-top hierarchical design approach.

The design involved the construction of four main units, such as the exponential unit, the edge de-

tection unit, the � and � calculation unit, register file, and the accumulator. All of the above units

have multipliers, adders, adder/subtractor, divider, comparator, and so on. These small functional

units are laid out individually through modularization and later interfaced with each other to get the

four above mentioned units. The datapath and the controller are constructed using the main units

239

www.manaraa.com

and the functional units. The layouts of the gates at the lowest level of hierarachy is drawn using

the CMOS standard cell design approach. We designed our own standard cell library containing

basic gates, such as AND, OR, NOT.

The datapath construction involves the implementation of the proposed architecture in the

previous section. The fundamental functional units are 8-bit adders, 8-bit multipliers and 8-bit

adder/subtractor. Each adder is constructed using 1-bit adders in a ripple-carry manner. The

adder/subtractor unit is obtained from the adder using XOR gates [180]. The carry inputs to the

adder/ subtractor and one of the inputs to the XOR gate are set to high whenever the select signal

for this unit is ”2” so that a subtraction is carried out. The output of the adder/subtracter module

gives the absolute value of the difference of two numbers when the difference is positive. When

the difference is less than 0 (which is indicated by the carry bit taking a value 0), the absolute value

is obtained by taking the 2’s complement of the output of the adder/subtractor module.

An 8-bit parallel array multiplier is obtained from full-adders and AND gates to implement

multiplication operations with reduced delay [181]. The divider is implemented using the shift and

subtract logic for the division [180]. The number to be divided is initially stored in two registers, A

and Q, and with each subtraction, the values in A and Q are shifted left, with the most-significant

bit in Q replacing the least-significant bit in A, and a 1 placed in the least-significant bit of Q. If

the value in A is less than that of the divisor, the same shift procedure is repeated, except that a 0

is placed in the least-significant bit of Q. Finally, the quotient is available in the register Q, and the

remainder in A.

The comparator was designed to compare the values of two 8-bit numbers for greater-than,

equal to, or less-than relations. First, a single-bit comparator was designed to compare the values

of two single-bit numbers, and later, instances of this module were cascaded to compare two 8-bit

numbers, starting from the most-significant bit position and proceeding towards the least-significant

bit position.

The accumulator is implemented as a 14-bit register to accommodate a maximum value ofÖ�¼VGµ�D�DÖ . The maximum value occurs when each pixel in a R)GµR block assumes the value of pure

white pixel gray value. The register file is an addressable array of 8-bit registers (words) [181].

240

www.manaraa.com

(a) Datapath (b) Controller

Figure 9.18. Layout of Datapath and Controller of the Proposed Chip

Based on the address specified and a Read/Write select line, at any time, a value can be either

written to or read from the register file. Here, we used a 5-word register file to store the five different

constants, such as @ú T � � � , � ñ÷c� T ú ø�÷ , � z÷c� T ú ø�÷ , � ù÷c� T ú ø�÷ , and
�<ÿ÷c� T ú ø�÷ , in Eqn. 9.9. Multiplexors are used at

appropriate places in the design to select one of the incoming lines. Each of such multiplexor is

implemented using a combination of transmission gates. Three asynchronously resettable registers

are designed to encode the five states of the controller depicted in Fig. 9.17(b). The three registers

could be reset by the user to return the controller to its intial state at any time and from there, the

watermarking function could be started afresh.

Each of the above mentioned modules are implemented and tested separately and then con-

nected together to obtain the final chip. The number of gates, power and areas of each module is

shown in Table 9.2.3 for operating voltage of
Z � Z 9 . The statistics are obtained using HSPICE for"#� Z ��Õ MOSIS SCN3M SCMOS technology. It is assumed that the proposed chip is to be used as

a module in any existing JPEG encoder or a digital camera, and use their memory. The layout of

241

www.manaraa.com

(a) Chip Layout

α
k

and β
k

Calculation Unit

Edge−Detection

Unit

Other Components
Controller

(b) Chip Floor Plan

Figure 9.19. Layout and Floor Plan of the Proposed Watermarking Chip

the watermarking datapath is shown in Fig. 9.18(a). The layout of the controller is shown in Fig.

9.18(b).

Table 9.6. Power and Area of Different Units

Modules Gate Count Power .bá � 0 Delay .b��Á�0
Exponential unit 2370 1.2314 0.8981
Edge detection unit 3599 1.4137 1.0967� and � calculation unit 16279 3.444 2.0241
Controller 163 0.0034 0.3201

The complete layout of the watermarking chip is given in Fig. 9.19(a) and the floor plan of the

chip is provided in Fig. 9.19(b). The clock frequency is driven by the critical delay of the water-

marking module. Table 9.2.3 shows the overall design details of the chip and the corresponding

pin diagram is shown in Fig. 9.20.

242

www.manaraa.com

Table 9.7. Overall Statistics of the Watermarking Chip

Area
Z � Z ¼YGÓ�A��RDS�áeá C

Number of gates �DR�¼�ÖDS
Supply Voltage

Z � Z 9
Clock frequency �DSD�A������*úã��
Number of I/O pins ���
Power ÖA��SD�DRDÖ�á �

Second / First

αmin
αmax
β min

β max
α

I

DataOut

Visible

{ImageDataIn

WatermarkDataIn

Start

Reset

Clock

Spatial Domain

Watermarking

Chip

Busy

DataReady

Figure 9.20. Pin Diagram for the Proposed Watermarking Chip

9.2.4 Results and Conclusions

Each of the functional units is simulated individually before being integrated together to de-

velop the whole chip. The functional verification of the whole chip is done by performing water-

marking on various test images. Fig. 9.21 shows various test images and the watermark image

used, which are borrowed from [83, 74, 77, 72]. The test images as well as the watermark im-

ages are of dimension �D�DÖeGû�D�DÖ . The watermarked images obtained using the first algorithm is

shown in Fig. 9.22. For this algorithm, the values of ��l�m«F , ��lok<� , ��lTm«F , and ��l�kh� are assumed

as "#��SD�A:<"#��SDRA:<"#�Ô"�� , and "#�Ô"�� , respectively. Similarly, Fig. 9.23 shows the watermarked images

obtained using the second algorithm, assuming � ï as "#�Ô" Z . Using simulations, the regression co-

efficients, such as $P@ , $oC , $ � , and $ â , are respectively found to be "#� ZDZ SDÖ�¼D¼�:<"#���#�7SDRDRA:h"#���7RD���¯¼�Ö ,
and "#���q���DSD�D� .

243

www.manaraa.com

(a) Lena (b) Bird (c) Nuts and Bolts

(d) Watermark

Figure 9.21. Original Host Images (a, b, and c) and Watermark Image (d)

A visual inspection of the watermarked images shows that the watermarking process is able to

preserve the quality of the image while explicitly proving the ownership. Of the various quantitative

measures available to quantify the quality of the watermarked images, we used signal-to-noise ratio. À p � 0 given in Eqn. 9.6. Software simulation results show that the
À p � for various watermarked

images is in the range of ��"56E; to �D��6E; .

In this work, we have presented a watermarking chip that can be integrated within a digital

camera framework for watermarking images. The watermarking chip can also be integrated in

any existing JPEG encoder. The chip has two different types of watermarking capabilities, both in

spatial domain. To our knowledge, this is the first watermarking chip having visible watermarking

functionalities. Out of the two watermarking schemes implemented, the first one does pixel-by-

pixel processing and the second one is a block-by-block processing algorithm. Additional work

needs to be done to develop block-by-block operation for the first algorithm so that high perfor-

244

www.manaraa.com

(a) Lena (b) Bird (c) Nuts and Bolts

Figure 9.22. Watermarked Images for the First Algorithm

(a) Lena (b) Bird (c) Nuts and Bolts

Figure 9.23. Watermarked Images for the Second Algorithm

mance hardware can be designed. However, both the algorithms are comparable from the
À p �

point of view.

9.3 Invisible and Visible Watermarking in DCT Domain

It is well known that the watermark can prove copyright and provide authenticity of the mul-

timedia object. The watermarking can be performed on the multimedia object either in spatial,

DCT or in wavelet domain. In the previous sections we described VLSI implementation of visi-

ble and invisible watermarking algorithms. In this era of portable electronic appliances the power

consumption is a major issue. Thus, any VLSI chip will be commercialy viable f its power con-

sumption is minimum. VLSI chips operating at multiple supply voltages are widely proposed as a

245

www.manaraa.com

solution for low power optimization. Recently, the dynamic (or variable) frequency and multiple

frequency have been proposed as techniques for low power design. In this work, we propose DCT

domain low power wateramarking architectures using both multiple supply voltages and multiple

supply frequency. The detailed architecture and the prototype chip implementation using TSMC"#���D��Õ technology are given in [85]. The prototype chip runs at a frequencies of ��"D"�*úã � and��"�*úã � and voltages of �A����9 and �A�Ô"D"�9 .

9.3.1 Watermarking Algorithms

The spread spectrum invisible watermarking algorithm from [182, 183, 80] and the DCT do-

main visible watermarking algorithm from [74, 77, 72] are chosen for VLSI implementation. We

used the following notations in our description.

9.3.1.1 Spread Spectrum Invisible Watermarking Insertion Algorithm

In [182, 183, 80], the watermark is inserted into the spectral components of the image using

technique analogous to spread spectrum communication. The watermark is inserted judiciously in

the perceptually significant components of a signal to make it robust to common signal distortions,

geometric distortion, and malicious attacks, while maintaining perceptual quality of the image.

The insertion of watermark in the host image is as of follows. The DCT co-efficients are com-

puted assuming the entire original image as one block. The 1000 largest of these co-efficients are

identified as the perceptually significant for the image. The watermark I ùÏT@7:BÏvC�:4�E�E�E�E:BÏ�@ T�T�T is

computed where each Ï m is chosen according to p .c"#:7�q0 , where p .c"#:7�q0 denotes a normal distribu-

tion with mean 0 and variance 1. The watermark is inserted in the DCT domain of the image by

setting the frequency components in the original image using the following.

$ ï�� .báû:B��0ç $ ï .báû:B��0�	�.}��Oà�gÏ m 0 (9.21)

The values of á and � corresponds to the pixels locations for 1000 largest DCT co-efficients, and�û �"#��� .
246

www.manaraa.com

Table 9.8. Notations used in the Description of the AlgorithmU
: Original (or host) image (a grayscale image)$ ï : DCT transformed original image�
: Watermark image (a grayscale image)$ � : DCT transformed watermark image.báû:B��0 : A pixel locationU � : Watermarked image$ ï � : DCT transformed watermarked imagep ï G p ï : Original image dimension (same as watermarked image dimension)p � G p � : Watermark image dimensionp�� G p�� : Dimension of a blockp Ø U ; : Number of original image blocks Ý i û
<i ûi	��
<i�� ßp Ø � ; : Number of watermark image blocks Ý i �
<i �i	��
<i	� ß¤ ï : The � | y block of the DCT transformed original image $ ï¤ � : The �#| y block of the DCT transformed watermark image $ �¤ ï � : The � | y block of the DCT transformed watermarked image $ ï �� : Scaling factor for ��| y block (used for host image scaling)� : Embedding factor for ��| y block (used for watermark image scaling)¤ ï .c"#:<"�0 : DC-DCT co-efficient of the � | y block DCT block ¤ ï ¤ ï lok<� .c"#:<"�0 : Maximum of the DC-DCT co-efficients .z N*+ý�Ï-.c¤ ï .c"#:<"�0º0n|Ñ�60Õ � � ï � : Mean gray value of the original image block ¥ , which is same as ¤ ï .c"#:<"�0Õ � � ï : Mean gray value of the original image

UÕ � � ï ² §�� : Maximum of mean gray value of any original image block W*+ý�Ï � Õ � � ï � � & Õ � � ï �}� ï�õ © : Mean gray value of any original image block with all white pixelsÕ (� � ï � : Normalized Õ � � ï �Õ (� � ï : Normalized Õ � � ïÕ	� � ï � : Mean of the AC-DCT co-efficients of the original image block ¥ ô � � ï � : Variance of the AC-DCT co-efficients of the original image block ¥ ô � � ï ² §�� : Maximum variance of AC-DCT co-efficients of any block N*úý�Ï � ô � � ï � � & ô � � ï �}� ïöõ © : Variance of AC-DCT co-efficients of original image block with all white pixelsÕ (� � ï � : Normalized Õ�� � ï �ô (� � ï � : Normalized ô � � ï ���l�kh� : The maximum value of � � lTm«F : The minimum value of � ��l�k<� : The maximum value of � ��lTm«F : The minimum value of � � : A scaling factor used for invisible watermark insertionU õ�y4m | � : Gray value corresponding to pure white pixel

247

www.manaraa.com

9.3.1.2 Visible Watermarking Insertion Algorithm

The DCT domain visible watermarking algorithm proposed in [74, 77, 72] incorporates the

human visual system (HVS) models to insert watermark adaptively. The insertion algorithm is as

follows. The original image
U

(one to be watermarked) and the watermark image
�

are divided into

blocks of size p � G p � . The DCT co-efficient $ ï for all the blocks of the original image are found

out. For each block of the original image the mean gray value is computed as Õ � � ï � +¤ ï .c"#:<"�0 .
The normalized mean gray values is calculated using the following equation.

Õ (� � ï � � v � û �� v � û ² §�� � û � ó T ® T ô� û ² §�� ó T ® T ô � û � ó T ® T ôO k<� ó � û � ó T ® T ôbô ¸ � (9.22)

Then the normalized mean gray value of the whole image is calculated as follows.

Õ (� � ï @i � ï � �ji � ï � ´ @4� T Õ (� � ï � i û
<i ûi	��
<i�� � ¶ û�� ¶ û¶
� �
¶
� ´ @4� T Õ (� � ï � (9.23)

The mean and variance of AC DCT co-efficients of each block are calculated using the following

equations. Õ	� � ï � @i	��
<i	� � l � F ¤ ï .báû:B��0ô � � ï � @i	��
<i	� � l � F � ¤ ï .báû:B��0�d¸Õ	� � ï � � C (9.24)

Where, the values of á and � corresponds to the locations of each pixel for each � | y block with

reference to the pixel locations of the original image. The normalized variance of AC DCT co-

efficients are computed as follows.

ô (� � ï � ��� � û �� � � û ² §�� ��� � û �O k<� . ��� � û � 0 ¸ � (9.25)

The scaling and embedding factor for each block are computed as below.

� ô (� � ï � L7Ï�ä � d^.bÕ (� � ï � dûÕ (� � ï 0 C �� @� ? � � û � � �ÇdÖL7Ï�ä � d^.bÕ (� � ï � dûÕ (� � ï 0 C �q� (9.26)

248

www.manaraa.com

The � and � are scaled to the range .2�ilTm«Fv:h��l�kh��0 and .2��lTm«Fu:h�glok<��0 , respectively. The edge

blocks are determined, and the � and � for edge blocks are taken to be �ilok<� and �6l�m�F , respec-

tively. The DCT co-efficient $ � for all the blocks of the watermark image are found out. The

visible watermark is inserted in the host images block-by-block and watermarked image block is

obtained. The number of blocks watermarked is p Ø � ; , thus �Ñ �"1� p Ø � ;�dà� .
¤ ï � � ¤ ï Oa� ¤ � (9.27)

9.3.1.3 Algorithm Modification for Hardware Implementations

For invisible watermarking insertion in Eqn. 9.21 the three largest AC DCT co-efficients are

considered as the candidates.

¤ ï � .báû:B��0T ¤ ï .báû:B��0�O �e� .báû:B��0 . where, �V �"-� p Ø U ;�dà�q0 (9.28)

Where, .báû:B��0 corresponds to the three largest AC DCT values for � | y block. The random number

matrix � is constructed from the random number I �Ï @ :BÏ C :4�E�E� .
For visible watermarking algorithm the edge detection is an important step. The first step of

edge detection involves summation of the absolute values of all AC DCT coefficients of each block

as follows. ºº Õ � � ï � ºº @i	��
<i�� � l � F Þ ¤ ï .báû:B��04Þ (9.29)

The maximum of the above values is ºº Õ	� � ï ² §�� ºº *úý�Ï � ºº Õ	� � ï � ºº � . A block is declared as an

edge block if ºº Õ	� � ï � ºº X�� ºº Õ	� � ï ² §�� ºº . The
�

is a threshold constant; larger
�

means lesser number

of blocks declared as edge block.

In Eqn. 9.22 the normalization is performed using the ¤ ï l�kh� .c"#:<"�0 , the maximum of ¤ ï .c"#:<"�0 .
Finding ¤ ï l�kh� .c"#:<"�0 out of i û
<i ûi	��
<i	� values of ¤ ï s can slow down the insertion process. So, to

improve the performance of the VLSI chip, we use ¤ ï õ�y4m | � .c"#:<"�0 for normalisation; ¤ ï õ�y4m | � .c"#:<"�0 is

249

www.manaraa.com

the DC DCT of a block having all white pixels. Thus, the Eqn. 9.22 is modified to the following:

Õ (� � ï � � v � û �� v � û �}� ï�õ © � û � ó T ® T ô� û �}� ïöõ © ó T ® T ô (9.30)

We aim at improving the performance degradation due to normalization involved in Eqn. 9.25.

now we aim at improving the performance degradation due to this step. Using 9.25 in Eqn. 9.26,

we have the following equation.

� � � � û �� � � û ² §�� L4Ï�ä � d^.bÕ (� � ï � d×Õ (� � ï 0 C �� ��� � û ² §��� � � û � � ��dÖL7Ï�ä � d^.bÕ (� � ï � dûÕ (� � ï 0 C �7� (9.31)

The factor ô � � ï ² §�� in Eqn. 9.31 serves as a constant scaling factor. Hence, we redefine the

equations as follows.

� � ô � � ï � L4Ï�ä � d^.bÕ (� � ï � d×Õ (� � ï 0 C �� � @��� � û � � �ÇdÖL7Ï�ä � d^.bÕ (� � ï � dûÕ (� � ï 0 C �q� (9.32)

Where, the � � and � � values are current values of � and � , respectively. The above equations

contain exponential .�L7Ï�ä�0 , which needs to be addressed. Eqn. 9.32 can be rewritten using Taylor

series approximation upto the square term as follows.

� � ô � � ï � 	 � �Çd[.bÕ (� � ï � dûÕ (� � ï 0 C ON.bÕ (� � ï � d¸Õ (� � ï 0 â �� � @��� � û � 	 � .bÕ (� � ï � dûÕ (� � ï 0 C d¬.bÕ (� � ï � dûÕ (� � ï 0 â � (9.33)

Now, the � � and � � are scaled to the range .2��l�m«Fv:h��l�kh��0 and ./��l�m�Fv:h�glok<��0 , respectively. The

scaled � � and � � are respectively the � s and � s we are looking for.

9.3.2 VLSI Architecture

The overall architecture for the proposed DCT domain watermarking chip is shown in Fig. 9.24

which can insert both invisible and visible watermarks. This is a decentralized controller architec-

250

www.manaraa.com

Random Number

ModuleGeneration

Module

Invisible Insertion

Edge Detection

Module

αmin

αmax

min
β

β
max

Scaling

and

Embedding

Factor

Module

Visible Insertion

Module

DCT ModuleDCT Module

Module

Perceptual Analyzer

α

Watermarked Image

Watermark ImageOriginal Image

Invisible Watermarking Visible Watermarking

Figure 9.24. Combined Architecture for DCT domain Invisible and Visible Watermarking Chip

ture in which each module has its own controller. Here, we provide the proposed architecture in

brief. The detailed architecture and the corresponding VLSI implementation are given in [85].

The modules used for invisible watermark insertion are DCT, random number generator, and

invisible insertion (shown in Fig. 9.25). After the DCT co-efficients of the host image is calculated

using DCT module, insertion module adds the random numbers to them. The � parameter is also

given as input to the insertion module. The three appropriate AC DCT coefficients are chosen for

watermark insertion using a counter. The DCT module is shown in Fig. 9.25(a). The DCT module

consists of the following three sub-modules: (i) DCT \ , (ii) DCT] , and (iii) Controller. Apart

from the above, flip-flops and latches are also used to store and forward the appropriate AC-DCT

coefficients to the insertion module. The architecture of both the DCT \ and DCT] modules are

borrowed from [184, 185]. Both DCT \ and DCT] use sixteen multipliers and twelve adders.

All multipliers and adders pertain to IEEE 754 standard as implemented in IEEE.std logic arith

package in VHDL [186]. The DCT controller determines the coefficients to be forwarded, the

memory addresses where the coefficients are to be stored, the time to trigger the invisible insertion

module, and the random number generation module. The invisible watermark insertion module is

shown in Fig. 9.25(b). The insertion module, which consists of a multipler and an adder, has its

251

www.manaraa.com

(constants)

Buffers

(constants)

Buffers

Decoder

Flip−Flop

DCT_YDCT_X

Latch

Latch
From controller

36

Input Image 72

36 288

52

208

13

195

Coefficients

Coefficients

DC−DCT

AC−DCT

(a) DCT Module

Multiplier Adder

Random Numbers

13

13

DCT−Coefficients

Input

13

Watermarked

DCT−Coefficients

26

α 26

(b) Invisible Insertion Module

Figure 9.25. Architecture of the Different Units used for Invisible Watermarking

own controller. The insertion module scales the random number generated with � and adds it to the

DCT coeffcient. The random number generation module consists of linear feedback shift registers

(LFSR) [180].

The five modules involved in visible watermarking are as follows : (i) DCT module, (ii) Edge

Detection module (iii) Perceptual Analyzer module, (iv) Scaling and Embedding Factor module,

and (v) Visible Watermark Insertion module. Each of the above modules are discussed in detail

below. The architecture of the DCT module is same as the one discussed in the previous section

(Fig. 9.25(a)). The architecture of the rest are shown in Fig. 9.26.

The edge detection module determines the edge blocks in the original image. The threshold

constant
�

is given as input to the edge detection module. The three parts of the edge detection

module implement a particular function, such as accumulation, comparison and detection needed

for edge detection (refer Eqn. 9.29).

The perceptual analyzer module evaluates the Eqns. 9.22 and 9.25. Similar to the edge detec-

tion module, the perceptual analyzer module is also divided into three sub modules. The first sub

module, namely the mean calculator computes the mean of the AC-DCT coefficients. The result of

this sub-module is passed onto the next sub-module called the variance calculator module, which

252

www.manaraa.com

Accumulator Comparator

|µACIk
| |µACIk

|Max ()
Edge Detector

AC−DCT

Coefficients

13

1717

τ

17

Block

Edge or Nonedge

17

(a) Edge Detection Module

AC mean

µ
IkAC

σACIk

µ
IkDC

µ
DCI

 Variance

13

AC−DCT

Coefficients

26

13

13

Coefficients

13DC−DCT

DC mean

13

13

(b) Perceptual Anal-
yser Module

Scaling Module Scaling Module

DCµ I DCµ Ik
σAC Ik

αk β k

13 13

24 24

Alpha−Beta Module

13 2613

(c) Scaling and Embed-
ding Factor Module

β min

cIWk

c Wk
cIk αk

β kα max

13 13 1313 13
13

26

Visible Insertion Module

sel

(d) Visible Insertion Module

Figure 9.26. Architecture of the Different Units used for Visible Watermarking

calculates the variance in the AC-DCT coefficients. The DC-DCT mean calculator is the third sub-

module of the perceptual analyzer. These submodules are implemented with adders, and feedback

flip-flops, etc..

The scaling factor � and the embedding factor � are computed by the Scaling and Embedding

factor module using Eqn. 9.33. This module is divided into two sub modules. The first module

calculates the scaling factors and the embedding factors and is called the alpha-beta module. The

second sub module scales down the scaling and embedding factors to a particular range depending

on the user defined ranges .2�ilTm«Fu:h�glok<��0 and .b��lTm«F�:B�6l�kh��0 .
The last module in this chip is the watermark insertion module. It serves the purpose of insert-

ing the watermark into the original image. Using the information provided by the edge detection

module and the scaling and embedding factor module, the watermark is inserted into the original

image. It consists of two multipliers and an adder for evaluating the Eqn. 9.27 and has similar

253

www.manaraa.com

DCT_X

DCT_Y

Invisible Watermark Insertion

Visible Watermark Insertion

Scaling and Embedding Factor Module

Slower Clock

Lower Voltage Normal Voltage

Normal Clock

Edge Detection Module

Perceptual Analyzer Module

Figure 9.27. Dual Voltage and Dual Frequency Operation of the Datapath

architecture as that of invisible insertion module (in Fig. 9.25(b)). Multiplexors are used to select

appropriate values of � and � for a non-edge blocks and an edge blocks.

The chip is to be operated with dual frequency dual voltage supplies (refer Fig. 9.27). Apart

from the dual clock supplies, local clocks are automatically generated to trigger the operation of

some modules. These local clocks are generated from the localized controllers embedded within

each module. This type of clock generation within the chip helps to indirectly implement the clock

gating technique. A low voltage supply is used for the DCT modules. The chip is implemented in

such a way that the clock for the non-DCT modules must be an exact multiple of the clock for the

DCT module. The DCT block processes 4 image pixels at a time. The other modules in the chip

operate on one pixel at at time. Hence the DCT block can be clocked at one fourth the non-DCT

clock frequency. The delay of the DCT module is less than its clock period. In this way there is a

slack introduced in the DCT module which makes it possible to operate the DCT module at a lower

voltage. The combination of low clock frequency and low voltage supply translates to lower power

consumption by the DCT module.

A hierarchical design approach was adopted in implementing the chip. Standard cell design

methodology was used for generating the layout. The standard cell design library used was obtained

from [187], which is designed using TSMC "#���D��Õ CMOS technology. The standard cell library

includes basic gates, flip flops, IO pads and corner cells. The layout for each module was generated

and later integrated to obtain the final chip. The detailed implementation of the DCT domain

254

www.manaraa.com

watermarking chip is discussed in [85]. The layout of the overall chip, floorplan of the chip and

chip statistics are given.

Figure 9.28. Layout of the DCT Domain Invisible and Visible Watermarking Chip [85]

DCT_Y

Image

Module

DCT_X

Module

DCT_X

Module

Watermark

Module

Insertion

Visible

DCT_Y

Watermark

Insertion

Module

Invisible

Module

Edge

Detection

Module

Perceptual

Analyzer

Module

Scaling and
Embedding
Factor
Module

Image

Figure 9.29. Floorplan of the DCT Domain Invisible and Visible Watermarking Chip [85]

Table 9.9. Overall Statistics of the DCT Domain Watermarking Chip [85]

Area ¼��Ô"YGe¼��Ô"�áeá C
Supply Voltages �A����9 and ������9
Operating Frequencies �DRD�D*+ã�� and ��"�*úã��
Power (Dual Voltage and Frequency) "#� Z Ö�¼Dá �
Power (Normal Operation) ����SD��á �

255

www.manaraa.com

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

The reduction of peak power, peak power differential, average power and energy are equally im-

portant. In this dissertation, we propose a framework for the reduction of these parameters through

datapath scheduling at behavioral level. Several ILP based and heuristic based scheduling schemes

are developed for datapath synthesis to minimize energy, energy delay product, peak power, si-

multaneous peak power and average power, simultaneous peak power, average power, peak power

differential and energy, and power fluctuation. Three modes of circuit design, such as, single sup-

ply voltage and single frequency (SVSF), multiple supply voltages and dynamic frequency clock-

ing (MVDFC), and multiple supply voltages and multicycling (MVMC) are considered. A new

parameter called ”Cycle Power Function” ./$'%'&10 is defined which captures the transient power

characteristics as the equally weighted sum of normalized mean cycle power and normalized mean

cycle differential power.

The ILP based schemes provide optimal solutions, however the growth of the problem com-

plexity is exponential in terms of number of operations in the data flow graph. The alternate

method is the heuristic based approach. The heuristics based algorithms provide polynomial time

bound solutions for the scheduling problem. The reduction in energy and energy delay product

was approximately the same for both heuristic and ILP-based methods. Similarly, the peak power

(and average power) minimization was appreciably high for peak and average power minimization

work. The significant results begin accomplished by cycle power function minimization works,

which provided reduction in transient power and energy. Similarly, comparison of multicycling

based works with dynamic frequency clocking based works reveal that dynamic frequency clock-

ing based works out-perform in almost all instances.

256

www.manaraa.com

None of the datapath scheduling algorithms available in current literature minimize transient

power. There are few works available that handle peak power minimization. There are no research

works handling both voltage and frequency parameters. Thus, we conclude any of the low power

datapath scheduling algorithms proposed in this dissertation can create strong impact low power

behavioral synthesis research.

The dissertation also involved design of visible and invisible watermarking chips both in spatial

and DCT domains. The chips can be easlily integrated with any existing JPEG encoder or still

digital camera. While the combined robust-fragile spatial domain invisible watermarking chip

consumes �A�Ô"���á � power the spatial domain visible watermarking chip consumed ÖA��S Z á � . The

watermarked images produced by the watermarking chips are comparable with that obtained using

the corresponding software implementations. The DCT domain watermarking chip is capable of

inserting spread spectrum invisible watermark and an adaptive visible watermark. It operates at

dual supply voltages and dual frequency mode. All the watermarking chip designed are the first

implementatios in the respective category. At this digital age, when the copyright and piray are

threat to indudtrial growths, the secure digital devices integrated with watermarking chips can

produce copyrighted multimedia data in real-time.

The scheduling algorithms need to be extended to include pipelined datapaths in both dy-

namic frequency clocking and multicycling scenarios. The benchmarks used to test the schedul-

ing schemes are data intensive digital signal processing benchmark circuits. The effectiveness of

scheduling algorithms for control intensive applications needs to be investigated. Integer Linear

Programming(ILP) based techniques for datapath scheduling are optimal, but cannot handle large

benchmark circuits. Heuristic algorithms are fast, but generate sub optimal solutions should be

used for scheduling of large benchmarks. The power model may be modified to consider the effect

of exact switching activity and binding. More research is needed to develop low power dynamic

clocking units for the generation of dynamic frequencies in VLSI circuits. The effect of dynamic

clocking on the overall clock network has to be studied. Similarly, the design works can be ex-

tended to develop pipelined and / or SIMD based designs.

257

www.manaraa.com

REFERENCES

[1] A. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power CMOS Digital Design,”
IEEE Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–483, Apr 1992.

[2] Y. L. Lin, “Recent Developments in High-Level Synthesis,” ACM Transactions on Design
Automation of Electronic Systems, vol. 2, no. 1, pp. 2–21, Jan 1997.

[3] M. C. McFarland, Alice C. Parker, and Raul Camposano, “The High-Level Synthesis of
Digital Systems,” Proceedings of the IEEE, vol. 78, no. 2, pp. 301–318, Feb 1990.

[4] D. Gajski and N. Dutt, High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic Publishers, 1992.

[5] D. Singh, J. M. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Sehgal, and T. J. Mozdzen,
“Power Conscious CAD Tools and Methodologies: A Perspective,” Proceedings of the
IEEE, vol. 83, no. 4, pp. 570–594, Apr 1995.

[6] D. Sylvester and H. Kaul, “Power-Driven Challanges in Nanometer Design,” IEEE Design
and Test of Computers, vol. 13, no. 6, pp. 12–21, Nov-Dec 2001.

[7] D. Sylvester and H. Kaul, “Future Performance Challanges in Nanometer Design,” in
Proceedings of the 38th Design Automation Conference, June 2001, pp. 3–8.

[8] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Reducing Power in
High-Performance Microprocessors,” in Proceedings of the ACM / IEEE Design Automation
Conference, 1998, pp. 732–737.

[9] L. Benini, G. De Michelli, and A. Macii, “Designing Low-Power Circuits : Practical
Recipes,” IEEE Circuits and Systems Magazine, vol. 1, no. 1, pp. 6–25, March 2001.

[10] S. Borkar, “Design challenges of technology scaling,” IEEE Micro, vol. 19, no. 4, pp. 23–29,
July-Aug 1999.

[11] V. De and S. Borkar, “Technology and design challenges for low power and high perfor-
mance [microprocessors],” in Proceedings of the International Symposium on Low Power
Electronics and Design, 1999, pp. 163–168.

[12] D. E. Lackey, P. S. Zuchowski, and J. Koehl, “Designing mega-ASICs in nanogate tech-
nologies,” in Proceedings of the Design Automation Conference, 2003, pp. 770–775.

[13] E. Sicard and S. D. Bendhia, Deep-submicron CMOS Circuit Design (simulator in Hands),
Brooks/Coles, 2003.

258

www.manaraa.com

[14] J. S. Lis and D. D. Gajski, “Synthesis from VHDL,” in Proceedings of the International
Conference on Computer Design, 1988, pp. 378–381.

[15] R. Composano and W. Wolf, High-Level VLSI Synthesis, Kluwer Academic Publishers,
1991.

[16] A. Raghunathan, N. K. Jha, and S. Dey, High-Level Power Analysis and Optimization,
Kluwer Academic Publishers, 1998.

[17] M. Pedram, “Power Minimization in IC Design: Principles and Applications,” ACM Trans-
actions on Design Automation of Electronic Systems, vol. 1, no. 1, pp. 3–56, Jan. 1996.

[18] L. Benini and G. De Micheli, “System-Level Power Optimization: Techniques and Tools,”
ACM Transactions on Design Automation of Electronic Systems, vol. 5, no. 2, pp. 115–192,
Apr 2000.

[19] J. M. Chang and M. Pedram, Power Optimization and Synthesis at Behavioral and System
Levels using Formal Methods, Kluwer Academic Publishers, 1999.

[20] K. Roy and S. C. Prasad, Low Power CMOS VLSI Circuits, John Wiley and Sons, 2000.

[21] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, Inc., 1994.

[22] C. Park, Task Scheduling in High Level Synthesis, Ph.D. thesis, University of Illinois at
Urbana-Champaign, 1996.

[23] A. C. Parker, J. Pizarro, and M. Mlinar, “MAHA : A Program for Datapath Synthesis,”
in Proceedings of the 23rd ACM / IEEE Design Automation Conference, June 1986, pp.
461–466.

[24] P. G. Paulin and J. P. Knight, “Force Directed Scheduling for the Behavioral Synthesis of
ASICs,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 8, no. 6, pp. 661–679, June 1989.

[25] S. Devadas and A. R. Newton, “Algorithms for Allocation in Datapath Synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 7,
pp. 768–781, July 1989.

[26] P. G. Paulin and J. P. Knight, “Scheduling and Binding Algorithms for High-Level Synthe-
sis,” in Proceedings of 26th ACM / IEEE Design Automation Conference, June 1989, pp.
1–6.

[27] C. A. Papachristou and H. Konuk, “A Linear Program Driven Scheduling and Allocation
Method,” in Proceedings of the 27th ACM/IEEE Design Automation Conference, 1990, pp.
77–83.

[28] I. C. Park and C. M. Kyung, “Fast and Near Optimal Scheduling in Automatic Data Path
Synthesis,” in Proceedings of the 28th Design Automation Conference, 1991, pp. 680–685.

259

www.manaraa.com

[29] R. Jain, A. Majumdar, A. Sharma, and H. Wang, “Empirical Evaluation of Some High-
Level Synthesis Scheduling Heuristics,” in Proceedings of the 28th Design Automation
Conference, 1991, pp. 210–215.

[30] C. T. Hwang and J. H. Lee aand Y. C. Hsu, “A Formal Approach to the Scheduling Problem
in High Level Synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 10, no. 4, pp. 85–93, April 1991.

[31] R. A. Walker and S. Chaudhuri, “Introduction to the Scheduling Problems,” IEEE Design
and Test of Computers, vol. 12, no. 2, pp. 60–69, Summer 1995.

[32] S. Raje and M. Sarrafzadeh, “GEM : A Geometric Algorithm for Scheduling,” in Pro-
ceedings of the IEEE International Symposium on Circuits and Systems (Vol. 3), 1993, pp.
1991–1994.

[33] J. Zhu and D. D. Gajski, “Soft Scheduling in High Level Synthesis,” in Proceedings of the
36th Design Automation Conference, 1994, pp. 219–224.

[34] M. J .M. Heijligers, L. J. M Cluitmans, and J. A. G. Jess, “High-level Synthesis Scheduling
and Allocation using Genetic Algorithms,” in Proceedings of the 28th Design Automation
Conference, 1991, pp. 61–66.

[35] S. Haynal and F. Brewer, “Automata-Based Symbolic Scheduling for Looping DFGs,” IEEE
Transactions on Computers, vol. 50, no. 3, pp. 250–267, Mar 2001.

[36] R. Camposano, “Path-Based Scheduling for Synthesis,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 10, no. 1, pp. 85–93, Jan 1991.

[37] P. G. Paulin and J. P. Knight, “Algorithms for High-Level Synthesis,” IEEE Design and Test
of Computers, vol. 6, no. 6, pp. 18–31, Dec 1999.

[38] E. Musoll and J. Cortadella, “Scheduling and Resource Binding for Low Power,” in Pro-
ceedings of the 8th International Symposium on System Synthesis, 1995, pp. 104–109.

[39] H. J. M. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and its Impact
on the Deisgn of Buffer Circuit,” IEEE Journal of Solid-State Circuits, vol. 19, no. 4, pp.
468–473, Aug 1984.

[40] A. C. Williams, A. D. Brown, and M. Zwolinski, “Simultaneous Optimization of Dynamic
Power, Area and Delay in Behavrioal Synthesis,” IEE Proceedings on Computer and Digital
Techniques, vol. 147, no. 6, pp. 383–390, Nov 2000.

[41] R. S. Martin and J. P. Knight, “Optimizing Power in ASIC Behavioral Synthesis,” IEEE
Design and Test of Computers, vol. 13, no. 2, pp. 58–70, Summer 1996.

[42] A. P. Chandrakasan and R.W. Brodersen, “Minimizing Power Consumption in Digital
CMOS Circuits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523, April 1996.

[43] H. S. Yun and J. Kim, “Power-Aware Modulo Scheduling for High-Performance VLIW
Processors,” in Proceedings of the International Symposium on Low Power Electronics and
Design, 2001, pp. 40–45.

260

www.manaraa.com

[44] R. S. Martin and J. P. Knight, “Using Spice and Behavioral Synthesis Tools to Optimize
ASICs’ Peak Power Consmpution,” in Proceedings of the 38th Midwest Symposium on
Circuits and Systems, 1996, pp. 1209–1212.

[45] S. P. Mohanty, N. Ranganathan, and S. K. Chappidi, “Peak Power Minimization Through
Datapath Scheduling,” in Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, Feb 2003, pp. 121–126.

[46] S. P. Mohanty, N. Ranganathan, and S. K. Chappidi, “Simultaneous Peak and Average Power
Minimization During Datapath Scheduling for DSP Processors,” in Proceedings of the ACM
Great Lakes Symposium on VLSI, Apr 2003, pp. 215–220.

[47] V. Raghunathan, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Transient Power
Management through High Level Synthesis,” in Proceedings of the International Conference
on Computer Aided Design, 2001, pp. 545–552.

[48] S. P. Mohanty and N. Ranganathan, “A Framework for Energy and Transient Power Reduc-
tion During Behavioral Synthesis,” in Proceedings of the International Conference on VLSI
Design, Jan 2003, pp. 539–545.

[49] L. Benini, G. Casterlli, A. Macii, and R. Scarsi, “Battery-Driven Dynamic Power Manage-
ment,” IEEE Design and Test of Computers, vol. 13, no. 2, pp. 53–60, Mar-Apr 2001.

[50] T. Burd and R. W. Brodersen, “Energy Efficient CMOS Microprocessor Design,” in Pro-
ceedings of the 28th Hawaii International Conference on System Sciences, 1995, pp. 288–
297.

[51] J. M. Chang and M. Pedram, “Energy Minimization using Multiple Supply Voltages,” IEEE
Transactions on VLSI Systems, vol. 5, no. 4, pp. 436–443, Dec 1997.

[52] J. Pouwelse, K. Langendoen, and H.Sips, “Energy Priority Scheduling for Variable Voltage
Processor,” in Proceedings of the International Symposium on Low Power Electronics and
Design, Aug 2001, pp. 28–33.

[53] J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall, Inc., Upper
Saddle River, NJ, 1996.

[54] S. P. Mohanty, N. Ranganathan, and V. Krishna, “Datapath Scheduling using Dynamic
Frequency Clocking,” in Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, Apr 2002, pp. 65–70.

[55] S. P. Mohanty and N. Ranganathan, “Energy Efficient Scheduling for Datapath Synthesis,”
in Proceedings of the International Conference on VLSI Design, Jan 2003, pp. 446–451.

[56] N. K. Jha, “Low Power System Scheduling and Synthesis,” in Proceedings of the Interna-
tional Conference on Computer-Aided Design, 2001, pp. 259–263.

[57] T. L. Martin and D. P. Siewiorek, “Nonideal Battery and Main Memory Effects on CPU
Speed-Setting for Low Power,” IEEE Transactions on VLSI Systems, vol. 9, no. 1, pp. 29–
34, Feb 2001.

261

www.manaraa.com

[58] T. Pering, T. Burd, and R. W. Brodersen, “Voltage Scheduling in the lpARM Microprocessor
System,” in Proceedings of the International Symposium on Low Power Electronics and
Design, 2000, pp. 96–101.

[59] N. Ranganathan, N. Vijaykrishnan, and N. Bhavanishankar, “A Linear Array Processor with
Dynamic Frequency Clocking for Image Processing Applications,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 8, no. 4, pp. 435–445, August 1998.

[60] N. Ranganathan, N. Vijaykrishnan, and N. Bhavanishankar, “A VLSI Array Architecture
with Dynamic Frequency Clocking,” in Proceedings of the International Conference on
Computer Design, 1996, pp. 137–140.

[61] I. Brynjolfson and Z. Zilic, “FPGA Clock Management for Low Power,” in Proceedings of
the International Symposium on FPGAs, 2000, pp. 219–219.

[62] I. Brynjolfson and Z. Zilic, “Dynamic Clock Management for Low Power Applications in
FPGAs,” in Proceedings of the IEEE Custom Integrated Circuits Conference, 2000, pp.
139–142.

[63] J. M. Kim and S. I. Chae, “New MPEG2 Decoder Architecture using Frequency Scaling,”
in Proceedings of the IEEE International Symposium on Circuits and Systems, 1996, pp.
253–256.

[64] S. P. Mohanty, N. Rangnathan, and S. K. Chappidi, “An ILP-Based Scheduling Scheme for
Energy Efficient High Performance Datapath Synthesis,” in Proceedings of the International
Symposium on Circuits and Systems (Vol. 5), 2003, pp. 313–316.

[65] M. Johnson and K. Roy, “Datapath Scheduling with Multiple Supply Voltages and Level
Converters,” ACM Transactions on Design Automation of Electronic Systems, vol. 2, no. 3,
pp. 227–248, July 1997.

[66] M. Igarashi, K. Usami, K. Nogami, F. Minami, Y. Kawasaki, T. Aoki, M. Takano, S. Sonoda,
M. Ichida, and N. Hatanaka, “A low-power design method using multiple supply voltages,”
in Proceedings of the International Symposium on Low Power Electronics and Design, Aug
1997, pp. 18–20.

[67] M. Hamada, M. Takahashi, H. Arakida, A. Chiba abd T. Terazawa, T. Ishikawa,
M. Kanazawa, M. Igarashi, K. Usami, and T Kuroda, “A Top-Down Low Power Design
Technique Using Clusture Voltage Scaling with Variable Supply-Voltage Scheme,” in Pro-
ceedings of the 1998 IEEE Costum Integrated Circuits Conference, 1998, pp. 495–498.

[68] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanzawa, M. Ichida, and K. Nogami,
“Automated low-power technique exploiting multiple supply voltages applied to a media
processor,” IEEE Journal of Solid-State Circuits, vol. 33, no. 3, pp. 463–472, Mar 1998.

[69] K. Usami, K. Nogami, M. Igarashi, F. Minami, Y. Kawasaki, T. Ishikawa, M. Kanzawa,
T. Aoki, M. Takano, C. Mizuno, M. Ichida, S. Sonoda, M. Takahashi, and N. Hatanaka,
“Automated low-power technique exploiting multiple supply voltages applied to a media
processor,” in Proceedings of the IEEE 1997 Custom Integrated Circuits Conference, May
1997, pp. 131–134.

262

www.manaraa.com

[70] S. Katzenbeisser and F. A. P. Petitcolas, Information Hiding techniques for steganography
and digital watermarking, Artech House, Inc., MA, USA, 2000.

[71] N. Memon and P. W. Wong, “Protecting Digital Media Content,” Communications of the
ACM, vol. 41, no. 7, pp. 34–43, Jul 1998.

[72] S. P. Mohanty, “Watermarking of Digital Images,” M.S. thesis, Indian Institute of Science,
Bangalore, India, 1999.

[73] G. W. Braudaway, K. A. Magerlein, and F. Mintzer, “Protecting Publicly Available Im-
ages with a Visible Image Watermark,” in Proceedings of the SPIE Conference on Optical
Security and Counterfiet Deterrence Technique (Vol. SPIE-2659), 1996, pp. 126–132.

[74] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A DCT Domain Visible
Watermarking Technique for Images,” in Proceedings of the IEEE International Conference
on Multimedia and Expo, 2000, pp. 1029–1032.

[75] J. Meng and S. F. Chang, “Embedding Visible Video Watermarks in the Compressed Do-
main,” in Proceedings of the International Conference on Image Processing (Vol. 1), 1998,
pp. 474–477.

[76] Y. Hu and S. Kwong, “Wavelet Domain Adaptive Visible Watermarking,” IEE Electronics
Letters, vol. 37, no. 20, pp. 1219–1220, Sep 2001.

[77] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “An Adaptive DCT Domain
Visible Watermarking Technique for Protection of Publicly Available Images,” in Proceed-
ings of the International Conference on Multimedia Processing and Systems, 2000, pp. 195–
198.

[78] P. Wayner, Disappearing Cryptography, Information Hiding : Steganography and Water-
marking, Morgan Kaufmann, CA, USA, 2002.

[79] M. Kankanahalli, Rajmohan, and K. R. Ramakrishnan, “Content Based Watermarking for
Images,” in Proceedings of the 6th ACM International Multimedia Conference, 1998, pp.
61–70.

[80] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure Spread Spectrum Watermarking
for Multimedia,” IEEE Transactions on Image Processing, vol. 6, no. 12, pp. 1673–1687,
Dec 1997.

[81] W. Zhu, Z. Xiong, and Y. Q. Zhang, “Multiresolution Watermarking for Images and Video,”
IEEE Transanctions on Circuits and Systems for Video Technology, vol. 9, no. 4, pp. 545–
550, June 1999.

[82] R. G. Wolfgang and E. J. Delp, “A Watermark for Digital Images,” in Proceedings of the
IEEE International Conference on Image Processing (Vol. 3), 1996, pp. 219–222.

[83] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A Dual Watermarking Tech-
nique for Images,” in Proceedings of the 7th ACM International Multimedia Conference
(Vol. 2), 1999, pp. 49–51.

263

www.manaraa.com

[84] J. Fridrich and M. Goljan, “Images with Self-Correcting Capabilties,” in Proceedings of the
International Conference on Image Processing (Vol. 3), 1999, pp. 792–796.

[85] K. Balakrishnan, “A Dual Voltage and Dual Frequency Low Power VLSI Implementation
of DCT Domain Image Watermarking Schemes,” M.S. thesis, University of South Florida,
Fall, 2003.

[86] M. Johnson and K. Roy, “Optimal Selection of Supply Voltages and Level Conversions
during Datapath Scheduing under Resource Constraints,” in Proceedings of the International
Conference on Computer Design, Oct 1996, pp. 72–77.

[87] M. Johnson and K. Roy, “Scheduling and Optimal Voltage Selection for Low Power
Multiple-Voltage DSP Datapaths,” in Proceedings of the IEEE Symposium on Circuits and
Systems (Vol. 3), June 1997, pp. 2152–2155.

[88] J. M. Chang and M. Pedram, “Energy Minimization Using Multiple Supply Voltages,” in
Proceedings of the International Symposium on Low Power Electronics and Design, 1996,
pp. 157–162.

[89] Y. R. Lin, C. T. Hwang, and A. C. H. Wu, “Scheduling Techniques for Variable Voltage Low
Power Design,” ACM Transactions on Design Automation of Electronic Systems, vol. 2, no.
2, pp. 81–97, Apr 1997.

[90] M. Sarrafzadeh and S. Raje, “Scheduling with Multiple Voltages under Resource Con-
straints,” in Proceedings of the IEEE Symposium on Circuits and Systems (Vol. 1), 1999, pp.
350–353.

[91] A. Kumar and M. Bayoumi, “Multiple Voltage-Based Scheduling Methodology for Low
Power in the High Level Synthesis,” in Proceedings of the International Symposium on
Circuits and Systems (Vol. 1). July, July 1999, pp. 371–379.

[92] A. Kumar and M. Bayoumi, “A novel scheduling-based CAD methodology for exploring
the design space of ASICs for low power,” in Proceedings of the 11th Annual IEEE Inter-
national ASIC Conference, Sep 1998, pp. 115–118.

[93] A. Kumar and M. Bayoumi, “A novel scheduling-based CAD methodology for exploring
the design space of ASICs for low power,” in Proceedings of the 1998 IEEE Asia-Pacific
Conference on Circuits and Systems, Nov 1998, pp. 391–394.

[94] M. A. Elgamel and M. Bayoumi, “On low-power high-level synthesis using genetic algo-
rithms,” in Proceedings of the 9th International Conference on Electronics, Circuits and
Systems (Vol. 2), Nov 2002, pp. 725–728.

[95] W. T. Shiue and C. Chakrabarti, “Low-Power Scheduling with Resources Operating at
Multiple Voltages,” IEEE Transactions on Circuits and Systems-II : Analog and Digital
Signal Processing, vol. 47, no. 6, pp. 536–543, June 2000.

[96] W. T. Shiue and C. Chakrabarti, “Low power scheduling with resources operating at multiple
voltages,” in Proceedings of the 9th International Symposium on Circuits and Systems (Vol.
2), June 1998, pp. 437–440.

264

www.manaraa.com

[97] A. Manzak and C. Chakrabarti, “A Low Power Scheduling Scheme with Resources Operat-
ing at Multiple Voltages,” IEEE Transactions on VLSI Systems, vol. 10, no. 1, pp. 6–14, Feb
2002.

[98] A. Manzak and C. Chakrabarti, “A Low Power Scheduling Scheme with Resources Oper-
ating at Multiple Voltages,” in Proceedings of the 1999 IEEE International Symposium on
Circuits and Systems (Vol. 1), July 1999, pp. 354–357.

[99] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri, “Profile-driven Behavioral Synthesis for
Low Power VLSI System,” IEEE Design and Test of Computers, vol. 12, no. 3, pp. 70–84,
Fall 1995.

[100] S. Katkoori, N. Kumar, and L. Rader and; R. Vemuri, “A profile driven approach for low
power synthesis,” in Proceedings of the International Conference on Asian and South Pacific
Design Automation Conference (ASP-DAC), 1995, pp. 759–765.

[101] A. Raghunathan and N. K. Jha, “SCALP: An Iterative-Improvement Based Low-Power
Datapath Synthesis System,” IEEE Transactions on CAD of Integrated Circuits and Systems,
vol. 16, no. 11, pp. 1260–1277, Nov 1997.

[102] A. Raghunathan and N. Jha, “Behavioral Synthesis for Low Power,” in Proceedings of the
International Conference on Computer Design, 1994, pp. 318–322.

[103] S. Bhatia and N. K. Jha, “Behavioral Synthesis for Hierarchical Testability of Controller /
Datapath Circuit with Conditional Branches,” in Proceedings of the International Confer-
ence on Computer Design, Oct. 1994.

[104] L. Y. Chiou, K. Muhammand, and K. Roy, “DSP data path synthesis for low-power appli-
cations,” in Proceedings of the International Conference on Acoustics, Speech, and Signal
Processing (Vol2), 2001, pp. 1165–1168.

[105] K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “High-level synthesis of low-power
control-flow intensive circuits,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 12, pp. 1715–1729, Dec 1999.

[106] R. Henning and C. Chakrabarti, “An approach to switching activity consideration during
high-level, low-power design space exploration,” IEEE Transactions on Circuits and Sys-
tems II: Analog and Digital Signal Processing, vol. 49, no. 5, pp. 339–351, May 2002.

[107] R. Henning and C. Chakrabarti, “Activity models for use in low power, high-level synthesis,”
in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing
(Vol. 4), Mar 1999, pp. 1881–1884.

[108] W. T. Shiue and C. Chakrabarti, “ILP Based Scheme for Low Power Scheduling and Re-
source Binding,” in Proceedings of the IEEE International Symposium on Circuits and
Systems (Vol. 3), 2000, pp. 279–282.

[109] M. Lundberg, K. Muhammad, K. Roy, and S. K. Wilson, “High-level modeling of switch-
ing activity with application to low-power DSP system synthesis,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (Vol.4), Mar 1999,
pp. 1877–1880.

265

www.manaraa.com

[110] M. Lundberg, K. Muhammad, K. Roy, and S. K. Wilson, “A novel approach to high-level
switching activity modeling with applications to low-power DSP system synthesi,” IEEE
Transactions on Signal Processing, vol. 49, no. 12, pp. 3157–3167, Dec 2001.

[111] M. K. Shin and C. H. Lin, “An efficient resource allocation algorithm with minimal power
consumption,” in Proceedings of the IEEE Region 10 International Conference on Electrical
and Electronic Technology (Vol. 2), 2001, pp. 703–706.

[112] J. Rabaey, C. Chu, P. Hoang, and M. Potkonjak, “Fast Prototyping of Datapath-Intensive
Architectures,” IEEE Design and Test of Computer, vol. 8, no. 2, pp. 40–51, June 1991.

[113] J. Monteiro, S. Devadas, P. Ashar, and A. Mauskar, “Scheduling Techniques to Enable
Power Management,” in Proceedings of the ACM / IEEE Design Automation Conference,
1996, pp. 349–352.

[114] R. V. Cherabuddi and M. A. Bayoumi, “A low power based partitioning and binding tech-
nique for single chip application specific DSP architectures,” in Proceedings of the Second
Annual IEEE International Conference on Innovative Systems in Silicon, Oct 1997, pp. 350–
361.

[115] J. S. Lee, H. D. Lee, C. W. Park, and S.-Y. Hwang, “Power-conscious scheduling algorithm
for performance-driven datapath synthesis,” IEE Electronics Letters, vol. 32, no. 17, pp.
1574–1576, Aug 1996.

[116] S. Gupta and S. Katkoori, “Force-directed scheduling for dynamic power optimization,” in
Proceedings of the IEEE Computer Society Annual Symposium on VLSI, 2002, pp. 68–73.

[117] A. Murugavel and N. Ranganathan, “A Game Theoritic Approach for Binding in Behavioral
Synthesis,” in Proceedings of the International Conference on VLSI Design, Jan 2003, pp.
452–458.

[118] R. V. Cherabuddi, M. A. Bayoumi, and H. Krishnamurthy, “A low power based system
partitioning and binding technique for multi-chip module architectures,” in Proceedings of
the 7th Great Lakes Symposium on VLSI, Mar 1997, pp. 156–162.

[119] W. T. Shiue, “High Level Synthesis for Peak Power Minimization using ILP,” in Proceedings
of the IEEE International Conference on Application Specific Systems, Architectures and
Processors, 2000, pp. 103–112.

[120] W. T. Shiue, “Low Power VLSI Design : Peak Power Minimization using Novel Scheduling
Algorithm Based on an ILP Model,” in Proceedings of the 10th NASA Symposium on VLSI
Design, Mar 2002.

[121] W. T. Shiue, J. Denison, and A. Horak, “A Novel Scheduler for Low Power Real Time
Systems,” in Proceedings of the 43rd Midwest Symposium on Circuits and Systems, Aug
2000, pp. 312–315.

[122] J. Pouwelse, K. Langendoen, and H.Sips, “Dynamic Voltage Scaling on a Low-Power Mi-
croprocessor,” in Proceedings of the 7th International Conference on Mobile Computing
Network, July 2001.

266

www.manaraa.com

[123] T. Ishihara and H. Yasura, “Voltage Scheduling Problem for Dynamic Variable Voltage
Processors,” in Proceedings of the International Symposium on Low Power Electronics and
Design, Aug 1998, pp. 197–202.

[124] T. Okuma, T. Ishihara, and H. Yasuura, “Real-time task scheduling for a variable voltage
processor,” in Proceedings of the 12th International Symposium on System Synthesis, Nov
1999, pp. 24–29.

[125] T. Okuma, H. Yasuura, and T. Ishihara, “Software energy reduction techniques for variable-
voltage processors,” IEEE Design and Test of Computers, vol. 18, no. 2, pp. 31–41, Mar-Apr
2001.

[126] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-line scheduling of hard real-time tasks
on variable voltage processor,” in Proceedings of the IEEE / ACM International Conference
on Computer-Aided Design, Nov 1998, pp. 653–656.

[127] I. Hong, D. Kirovaski, G. Qu, M. Potkonjak, and M. B. Srivastava, “Power optimization
of variable-voltage core-based systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 12, pp. 1702–1714, Dec 1999.

[128] M. M. Mansour, M. M. Mansour, I. Hajj, and N. Shanbhag, “Instruction Scheduling for
Low Power on Dynamically Variable Voltage Processors,” in Proceedings of the 7th IEEE
International Conference on Electronics, Circuits and Systems, 2000, pp. 613–618.

[129] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum, and A. Nicolau,
“Profile-based dynamic voltage scheduling using program checkpoint,” in Proceedings of
the Design, Automation and Test in Europe Conference and Exhibition, 2002, pp. 168–175.

[130] A. Azevedo, R. Cornea, I. Issenin R. Gupta, N. Dutt, A. Nicolau, and A. Veidenbaum, “Ar-
chitectural and compiler strategies for dynamic power management in the COPPER project
,” in Proceedings of the International Workshop on Innovative Architecture for Future Gen-
eration High-Performance Processors and Systems, 2001, pp. 25 –34.

[131] V. Swaminathan and K. Chakrabarty, “Investigating the effect of voltage-switching on low-
energy task scheduling in hard real-time systems,” in Proceedings of the Asia and South
Pacific Design Automation Conference, 2001, pp. 251–254.

[132] V. Swaminathan and K. Chakrabarty, “Pruning-based energy-optimal device scheduling for
hard real-time system,” in Proceedings of the Tenth International Symposium on Hardware
/ Software Codesign, 2002, pp. 175–180.

[133] C. H. Hsu, U. Kremer, and M. Hsiao, “Compiler-Directed Dynamic Frequency and Voltage
Scheduling,” in Proceedings of the Workshop on Power-Aware Computer Systems, Nov
2000, pp. 65–81.

[134] C. H. Hsu, U. Kremer, and M. Hsiao, “Compiler-Directed Dynamic Voltage/Frequency
Scheduling for Energy Reduction in Microprocessors,” Tech. Rep., Departament of Com-
puter Science, Rutgers University, 2001.

267

www.manaraa.com

[135] Y. H. Lee and C. M. Krishna, “Voltage-Clock Scaling for Low Energy Consumption in Real-
Time Embedded Systems,” in Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications, 1999, pp. 272–279.

[136] F. Yao, A. Demers, and S. Shenker, “A scheduling model for reduced CPU energy,” in
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, Oct 1995,
pp. 374–382.

[137] J. Luo and N. K. Jha, “Power-profile driven variable voltage scaling for heterogeneous dis-
tributed real-time embedded systems,” in Proceedings of the 16th International Conference
on VLSI Design, 2003, pp. 369–375.

[138] J. Luo and N. K. Jha, “Static and dynamic variable voltage scheduling algorithms for real-
time heterogeneous distributed embedded systems,” in Proceedings of the 15th International
Conference on VLSI Design, 2002, pp. 719–726.

[139] J. Luo, S. Peh, and N. K. Jha, “Simultaneous dynamic voltage scaling of processors and
communication links in real-time distributed embedded systems ,” in Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition, 2003, pp. 1150–1151.

[140] N. Vijaykrishnan, N. Ranganathan, and N. Bhavanishankar, “DFLAP : A Dynamic Fre-
quency Linear Array Processor,” in Proceedings of the International Conference on Image
Processing, 1996, pp. 1007–1010.

[141] N. Vijaykrishnan, N. Ranganathan, and N. Bhavanishankar, “A Dynamic Frequency Linear
Array Processor for Image Processing,” in Proceedings of the International Conference on
Pattern Recognition, 1996, pp. 611–615.

[142] V. Krishna, N. Ranganathan, and N. Vijaykrishnan, “Energy Efficient Datapath Synthesis
using Dynamic Frequency Clocking and Multiple Voltages,” in Proceedings of the Interna-
tional Conference on VLSI, 1999, pp. 440–445.

[143] V. Krishna, N. Ranganathan, and N. Vijaykrishnan, “An Energy Efficient Scheduling
Scheme for Signal Processing Applications,” in Proceedings of the thirty-second Asilomar
Conference on Signal, Systems and Computers (Vol. 2), 1998, pp. 1057–1061.

[144] C. Papachristou, M. Spining, and M. Nourani, “A Multiple Clocking Scheme for Low Power
RTL Design,” IEEE Transactions on VLSI Systems, vol. 7, no. 2, pp. 266–276, June 1999.

[145] T. Burd, T. Pering, A. Stratakos, and R. W. Brodersen, “A Dynamic Voltage Scaled Micro-
processor System,” in Proceedings of the IEEE International Solid-State Circuits Confer-
ence, Feb 2000, pp. 294–295.

[146] T. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, “A Dynamic Voltage Scaled
Microprocessor System,” IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1571–
1580, Nov 2000.

[147] A. Acquaviva, L. Benini, and B. Ricco, “Processor frequency setting for energy minimiza-
tion of streaming multimedia application,” in Proceedings of the 9th International Sympo-
sium on Hardware / Software Codesign, 2001, pp. 249–253.

268

www.manaraa.com

[148] L. Benini, E. Macii, M. Pnocino, and G. De Micheli, “Telescopic Units : A New Paradigm
for Performance Optimization of VLSI Design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 17, no. 3, pp. 220–232, Mar 1998.

[149] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, and M. Poncino, “Automatic
Synthesis of Large Telescopic Units Based on Near-Minimum Timed Supersetting,” IEEE
Transactions on Computers, vol. 48, no. 8, pp. 769–779, Aug 1999.

[150] V. Raghunathan, S. Ravi, and G. Lakshminarayana, “High-Level Synthesis with Variable-
Latency Components,” in Proceedings of the International Conference on VLSI Design, Jan
2000, pp. 220–227.

[151] K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B. C. Brock, K. I. Ishii, T. Y.
Nguyen, and J. L. Burns, “A 32-bit powerPC system-on-a-chip with support for dynamic
voltage scaling and dynamic frequency scaling,” IEEE Journal of Solid-State Circuits, vol.
37, no. 11, pp. 1441–1447, Nov 2002.

[152] K. Nowka, G. Carpenter, E. MacDonald, H. Ngo, B. Brock, K. Ishii, T. Nguyen, and
J. Burns, “A 0.9 V to 1.95 V dynamic voltage-scalable and frequency-scalable 32 b Pow-
erPC processor,” in Proceedings of the International Solid-State Circuits Conference (Vol.
1), 2002, pp. 340–341.

[153] Y. H. Lu, L. Benini, and G. De Micheli, “Dynamic frequency scaling with buffer insertion
for mixed workloads,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and System, vol. 21, no. 11, pp. 1284–1305, Nov 2002.

[154] T. Pering, T. Burd, and R. W. Brodersen, “Dynamic Voltage Scaling and the Design of
a Low-Power Microprocessor System,” in Proceedings of the Workshop on Power Driven
Microarchitecture, June 1998.

[155] T. Burd and R. W. Brodersen, “Design Issues for Dynamic Voltage Scaling,” in Proceedings
of the International Symposium on Low Power Electronics and Design, 2000, pp. 9–14.

[156] S. Hassoun and C. Ebeling, “Architectural Retiming : Pipelining Latency Constrained Cir-
cuits,” in Proceedings of the 33rd ACM / IEEE Design Automation Conference, 1996, pp.
708–713.

[157] S. Nowick, “Design of a low-latency asynchronous adder using speculative completion,”
IEE Proceedings on Computer Digital Techniques, vol. 143, no. 9, pp. 301–307, Sep 1996.

[158] L. D. Strycker, P. Termont, J. Vandewege, J. Haitsma, A. Kalker, M. Maes, and G. Depovere,
“Implementation of a Real-Time Digital Watermarking Process for Broadcast Monitoring on
Trimedia VLIW Processor,” IEE Proceedings on Vision, Image and Signal Processing, vol.
147, no. 4, pp. 371–376, Aug 2000.

[159] N. J. Mathai, D. Kundur, and A. Sheikholeslami, “Hardware Implementation Perspectives
of Digital Video Watermarking Algortithms,” IEEE Transanctions on Signal Processing,
2003.

269

www.manaraa.com

[160] T. H. Tsai and C. Y Lu, “A System Level Design for Embedded Watermark Technique
using DSC System,” in Proceedings of the IEEE International Workshop on Intelligent
Signal Processing and Communication System, 2001.

[161] A. Garimella, M. V. V. Satyanarayan, R. S. Kumar, P. S. Murugesh, and U. C. Niranjan,
“VLSI Impementation of Online Digital Watermarking Techniques With Difference Encod-
ing for the 8-bit Gray Scale Images,” in Proceedings of the International Conference on
VLSI Design, 2003, pp. 792–796.

[162] A. Antola, V. Piuri, and M. Sami, “A Low-Redundancy Approach to Semi-Concurrent Error
Detection in Datapaths,” in Proceedings of the Design Automation and Test in Europe, 1998,
pp. 266–272.

[163] P. Kollig and B. M. Al-Hashimi, “Simultaneous Scheduling, Allocation and Binding in High
Level Synthesis,” IEE Electronics Letters, vol. 33, no. 18, pp. 1516–1518, Aug. 1997.

[164] G. Fetweis, J. Chiu, and B. Fraenkel, “A Low-Complexity Bit-Serial DCT/IDCT Architec-
ture,” in Proceedings of the IEEE International Conference on Communications, 1993, pp.
217–221.

[165] K. Balakrishnan, “Peak Power Minimization through Datapath Scheduling using ILP Based
Models,” M.S. thesis, University of South Florida, Spring, 2003.

[166] R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Thomson Brooks Cole, 2003.

[167] P. E. Landman and J. M. Rabaey, “Architectural Power Analysis : The Dual Bit Type
Method,” IEEE Transactions on VLSI Systems, vol. 3, no. 2, pp. 173–187, Jun 1995.

[168] J. H. Satyanarayan and K. K. Parhi, “Theoritical Analysis of Word-Level Switching Activity
in the Presence of Glitch and Correlation,” IEEE Transactions on VLSI Systems, vol. 8, no.
2, pp. 148–159, Apr 2000.

[169] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, “Analytical Estimation of Signal Transition
Activity from Word-Level Statistics,” IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 16, no. 7, pp. 718–733, Jul 1997.

[170] S. P. Mohanty, N. Rangnathan, and S. K. Chappidi, “ILP Models for Energy and Transient
Power Minimization During Behavioral Synthesis,” in Proceedings of the 17th International
Conference on VLSI Design, 2004, p. to appear.

[171] S. P. Mohanty, N. Rangnathan, and S. K. Chappidi, “Transient Power Minimization Through
Datapath Scheduling in Multiple Supply Voltage Environment,” in Proceedings of the 10th
IEEE International Conference on Electronics, Circuits and Systems, 2003, p. to appear.

[172] S. S. Rao, Engineering Optimization : Theory and Practice, Addison-Wesley, 1996.

[173] M. J. Panik, Linear Programming : Mathematics, Theory and Practice, Kluwer Academic
Publishers, 1996.

270

www.manaraa.com

[174] B. A. McCarl and T. H. Spreen, Applied Mathematical Programming using Algebric Sys-
tems, Online Book at : http://agecon.tamu.edu/faculty/mccarl/regbook.htm, 1997.

[175] S. P. Mohanty, N. Rangnathan, and S. K. Chappidi, “Power Fluctuation Minimization During
Behavioral Synthesis using ILP-Based Datapath Scheduling,” in Proceedings of the 21st
IEEE International Conference on Computer Design, 2003, p. to appear.

[176] S. P. Mohanty, N. Ranganathan, and R. K. Namballa, “VLSI Implementation of Invisible
Digital Watermarking Algorithms Towards the Developement of a Secure JPEG Encoder,”
in Proceedings of the IEEE Workshop on Signal Processing Systems, 2003, pp. 183–188.

[177] A. Tefas and I. Pitas, “Robust Spatial Image Watermarking Using Progressive Detection,”
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing (Vol. 3), 2001, pp. 1973–1976.

[178] F. Bartolini, M. Barni A. Tefas, and I. Pitas, “Image authentication techniques for surveil-
lance applications,” Proceedings of the IEEE, vol. 89, no. 10, pp. 1403–1418, Oct 2001.

[179] S. P. Mohanty, N. Rangnathan, and R. K. Namballa, “VLSI Implementation of Visible
Watermarking for a Secure Digital Still Camera (S C DC) Design,” in Proceedings of the 17th
International Conference on VLSI Design, 2004, p. to appear.

[180] V. P. Nelson, H. T. Nagle, J. D. Irwin, and B. D. Caroll, Digial Logic Analysis and Design,
Prentice Hall, Upper Saddle River, New Jersey, USA, 1995.

[181] N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design : A Systems Perspec-
tive, Addison Wesley, Boston, MA, USA, 1999.

[182] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure Spread Spectrum Watermarking
of Images, Audio and Video,” in Proceedings of the IEEE International Conference on
Image Processing (Vol. 3), 1996, pp. 243–246.

[183] I.J.Cox, “A secure robust watermarking for multimedia,” in Proc. of First International
Workshop on Information Hiding, 1996, vol. 1174, pp. 185–206.

[184] M. Kaul, R. Vemuri, S. Govindarajan, and I. Ouaiss, “An Automated Temporal Partitioning
and Loop Fission approach for FPGA based reconfigurable synthesis of DSP applications,”
in Proceedings of the IEEE/ACM Design Automation Conference, 1999, pp. 616–622.

[185] S. Govindarajan, I. Ouaiss, M. Kaul, V.Srinivasan, and R. Vemuri, “An Effective Design
System for Dynamically Reconfigurable Architectures,” in Proceedings of the Sixth Annual
IEEE Symposium on Field-Programmable Custom Computing Machines, 1998, pp. 312–
313.

[186] Karen Miller, Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, 1999.

[187] J. B. Sulistyo and D. S. Ha, “Developing Standard Cells for TSMC 0.25um Technology un-
der MOSIS DEEP Rules,” Tech. Rep., Department of Electrical and Computer Engineering,
Virginia Tech, VISC-2002-02, 2002.

271

www.manaraa.com

ABOUT THE AUTHOR

Saraju P. Mohanty received the Bachelor of Technology degree in Electrical Engineering in

1995 from College of Engineering and Technology, Orissa University of Agriculture and Technol-

ogy, Bhubansewar, India. He recieved the Master of Engineering degree in Systems Science and

Automation from the Indian Institute of Science, Bangalore, India in 1999. He has taught sev-

eral courses as instructor at department of Computer Science and Engineering, University of South

Florida, USA and also at College of Engineering and Technology, Orissa University of Agriculture

and Technology, Bhubaneswar, India. He has published several research papers in areas of VLSI

design automation, VLSI design and Digital watermarking, and so on. His paper was nominated

for best paper award at international conference in VLSI Design 2003. In the year 2002 and 2003,

he recieved certificate of recognition from Provost, University of South Florida for outstanding

teaching. His research interests are High-Level Synthesis for Low Power, Low-Power VLSI De-

sign for Multimedia Applications, Computer Architecture, Digital Watermarking. He is a member

of IEEE-CS and ACM-SIGDA.

	University of South Florida
	Scholar Commons
	10-17-2003

	Energy and Transient Power Minimization During Behavioral Synthesis
	Saraju P. Mohanty
	Scholar Commons Citation

	tmp.1298573646.pdf.sKgyC

